Thermoeconomic Evaluation and Exergy Efficiency of Dissipative Components: A New Approach

Thermoeconomic evaluation aims at diagnosing the malfunction of energy systems and at optimizing their structure and performance. One of the main limitations of this approach is the adequate treatment of dissipative components, i.e., components where exergy is destroyed without gaining thermodynamic...

Full description

Autores:
Sagastume Gutierrez, A.
Cabello Eras, J.J.
Hernandez Herrera, H.
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/2222
Acceso en línea:
http://hdl.handle.net/20.500.12442/2222
Palabra clave:
Dissipative components
Energy efficiency
Thermoeconomic assessment increases
Dissipative assessmentm
Approach
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_e9a387a4338322098f70f34022e0e459
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/2222
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Thermoeconomic Evaluation and Exergy Efficiency of Dissipative Components: A New Approach
title Thermoeconomic Evaluation and Exergy Efficiency of Dissipative Components: A New Approach
spellingShingle Thermoeconomic Evaluation and Exergy Efficiency of Dissipative Components: A New Approach
Dissipative components
Energy efficiency
Thermoeconomic assessment increases
Dissipative assessmentm
Approach
title_short Thermoeconomic Evaluation and Exergy Efficiency of Dissipative Components: A New Approach
title_full Thermoeconomic Evaluation and Exergy Efficiency of Dissipative Components: A New Approach
title_fullStr Thermoeconomic Evaluation and Exergy Efficiency of Dissipative Components: A New Approach
title_full_unstemmed Thermoeconomic Evaluation and Exergy Efficiency of Dissipative Components: A New Approach
title_sort Thermoeconomic Evaluation and Exergy Efficiency of Dissipative Components: A New Approach
dc.creator.fl_str_mv Sagastume Gutierrez, A.
Cabello Eras, J.J.
Hernandez Herrera, H.
dc.contributor.author.none.fl_str_mv Sagastume Gutierrez, A.
Cabello Eras, J.J.
Hernandez Herrera, H.
dc.subject.eng.fl_str_mv Dissipative components
Energy efficiency
Thermoeconomic assessment increases
Dissipative assessmentm
Approach
topic Dissipative components
Energy efficiency
Thermoeconomic assessment increases
Dissipative assessmentm
Approach
description Thermoeconomic evaluation aims at diagnosing the malfunction of energy systems and at optimizing their structure and performance. One of the main limitations of this approach is the adequate treatment of dissipative components, i.e., components where exergy is destroyed without gaining thermodynamically useful output (condensers, throttling valves, etc.). Such components are constituents of some energy systems and influence their overall thermal efficiency. This research introduces the use of a different criterion of exergy efficiency to assess dissipative components. In this case, it is possible to define the efficiency of dissipative components without the introduction of negentropy flows. As case study, a Rankine cycle discussed in literature is selected. The different approaches to evaluate dissipative components are applied and compared with the proposed one. Results show that with the proposed approach it is possible to evaluate dissipative components in isolation avoiding the inconsistencies resulting from the use of negentropy flows in the assessment. The introduction of negentropy flows also increases the complexity of the assessment.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-08-10T21:35:10Z
dc.date.available.none.fl_str_mv 2018-08-10T21:35:10Z
dc.date.issued.none.fl_str_mv 2018
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 1816949X
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/2222
identifier_str_mv 1816949X
url http://hdl.handle.net/20.500.12442/2222
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv Medwell Journals (Scientific Research Publishing Company)
dc.source.eng.fl_str_mv Journal of Engineering and Applied Sciences
Vol. 13, No.9 (2018)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv http://docsdrive.com/pdfs/medwelljournals/jeasci/2018/2560-2569.pdf
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/9294902c-fd3a-48c6-9ac0-48c37678d4fa/download
bitstream.checksum.fl_str_mv 3fdc7b41651299350522650338f5754d
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv DSpace UniSimon
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814076138493837312
spelling Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Sagastume Gutierrez, A.fbaeff16-4398-461b-a13b-1657298aebd2-1Cabello Eras, J.J.31820f02-97b2-41fd-ba86-ca19fc7f5bdd-1Hernandez Herrera, H.d1fb8fda-32dd-4d87-9f58-a71c37f5d870-12018-08-10T21:35:10Z2018-08-10T21:35:10Z20181816949Xhttp://hdl.handle.net/20.500.12442/2222Thermoeconomic evaluation aims at diagnosing the malfunction of energy systems and at optimizing their structure and performance. One of the main limitations of this approach is the adequate treatment of dissipative components, i.e., components where exergy is destroyed without gaining thermodynamically useful output (condensers, throttling valves, etc.). Such components are constituents of some energy systems and influence their overall thermal efficiency. This research introduces the use of a different criterion of exergy efficiency to assess dissipative components. In this case, it is possible to define the efficiency of dissipative components without the introduction of negentropy flows. As case study, a Rankine cycle discussed in literature is selected. The different approaches to evaluate dissipative components are applied and compared with the proposed one. Results show that with the proposed approach it is possible to evaluate dissipative components in isolation avoiding the inconsistencies resulting from the use of negentropy flows in the assessment. The introduction of negentropy flows also increases the complexity of the assessment.engMedwell Journals (Scientific Research Publishing Company)Journal of Engineering and Applied SciencesVol. 13, No.9 (2018)http://docsdrive.com/pdfs/medwelljournals/jeasci/2018/2560-2569.pdfDissipative componentsEnergy efficiencyThermoeconomic assessment increasesDissipative assessmentmApproachThermoeconomic Evaluation and Exergy Efficiency of Dissipative Components: A New Approacharticlehttp://purl.org/coar/resource_type/c_6501Alkan, M.A., A. Kecebas and N. Yamankaradeniz, 2013. Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method. Energy, 60: 426-434.Farshi, L.G., S.M.S. Mahmoudi and M.A. Rosen, 2013. Exergoeconomic comparison of double effect and combined ejector-double effect absorption refrigeration systems. Appl. Energy, 103: 700-711.Gutierreza, A.S. and C. Vandecasteele, 2011. Exergy-based indicators to evaluate the possibilities to reduce fuel consumption in lime production. Energy, 36: 2820-2827.Jodat, A., 2016. Exergoeconomic analysis of gas turbines cogeneration systems. J. Eng. Appl. Sci., 11: 2545-2550.Kutas, T.J., 1995. The Exergy Method of Thermal Plant Analysis, Florida. Krieger Publishing, Malabar, Florida,.Lazzaretto, A. and G. Tsatsaronis, 2006. SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems. Energy, 31: 1257-1289.Lourenco, A.B., S.A. Nebra, J.J.C. Santos and J.L.M. Donatelli, 2015. Application of an alternative thermoeconomic approach to a two-stage vapour compression refrigeration cascade cycle. J. Braz. Soc. Mech. Sci. Eng., 37: 903-913.Lozano, M., A. Valero and L. Serra, 1993. Theory of Exergetic Cost and Thermoeconomic Optimization. In: Energy System and Ecology, Szargut, J. (Ed.). University of Zaragoza, Zaragoza, Spain, pp: 339-350.Lozano, M.A. and A. Valero, 1993. Thermoeconomic Analysis of Gas Turbine Cogeneration Systems. In: Thermodynamics and the Design, Analysis and Improvement of Energy Systems, Richter, H.J. (Ed.). ASME, New York, USA., pp: 311-320.Luo, X., J. Hu, J. Zhao, B. Zhang and Y. Chen et al., 2014. Improved exergoeconomic analysis of a retrofitted natural gas-based cogeneration system. Energy, 72: 459-475.Piacentino, A. and E. Cardona, 2010. Scope oriented Thermoeconomic analysis of energy systems, Part II: Formation structure of optimality for robust design. Appl. Energy, 87: 957-970.Piacentino, A. and F. Cardona, 2010. Scope-oriented thermoeconomic analysis of energy systems Part I: Looking for a non-postulated cost accounting for the dissipative devices of a vapour compression chiller; Is it feasible?. Appl. Energy, 87: 943-956.Piacentino, A., 2015. Application of advanced thermodynamics, thermoeconomics and exergy costing to a multiple effect distillation plant: In-depth analysis of cost formation process. Desalin., 371: 88-103.Santos, D.R.G.D., P.R. Faria, J.J. Santos, D.J.A. Silva and O.D. Florez, 2016. Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems. Energy, 117: 590-603.Santos, J., M. Nascimento, E. Lora and A.M. Reyes, 2009. On the negentropy application in thermoeconomics: A fictitious or an exergy component flow?. Intl. J. Thermodyn., 12: 163-176.Sharifi, M. and S. Khalilarya, 2016. Exergoeconomic evaluation and optimisation of a novel combined power and absorption-ejector refrigeration cycle driven by natural gas. Intl. J. Exergy, 19: 232-258.Teixeira, D.S.M. and D.O.S. Junior, 2001. Thermoeconomic evaluation of cogeneration systems for a chemical plant. Intl. J. Thermodyn., 4: 157-163.Torres, C., A. Valero, V. Rangel and A. Zaleta, 2008. On the cost formation process of the residues. Energy, 33: 144-152.Valero, A., 2006. Exergy accounting: Capabilities and drawbacks. Energy, 31: 164-180.Valero, A., F. Lerch, L. Serra and J. Royo, 2002. Structural theory and thermoeconomic diagnosis: Part II: Application to an actual power plant. Energy Convers. Manage., 43: 1519-1535.Valero, A., M.A. Lozano, L. Serra and C. Torres, 1994. Application of the exergetic cost theory to the CGAM problem. Energy, 19: 365-381.Yao, H., D. Sheng, J. Chen, W. Li, A. Wan and H. Chen, 2012. Exergoeconomic analysis of a combined cycle system utilizing associated gases from steel production process based on structural theory of thermoeconomics. Applied Therm. Eng., 51: 476-489.LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/9294902c-fd3a-48c6-9ac0-48c37678d4fa/download3fdc7b41651299350522650338f5754dMD5220.500.12442/2222oai:bonga.unisimon.edu.co:20.500.12442/22222019-04-11 21:51:30.667metadata.onlyhttps://bonga.unisimon.edu.coDSpace UniSimonbibliotecas@biteca.comPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=