Effects of Splitter Blade Length on Disc Pump Performance

The disc pump operates using boundary layer principle and viscous drag with a relatively low efficiency. There are methods to increase head and efficiency, one of them is the placing of blades sector sor splitter blades in disc. This method has been applied only in the low viscosity fluids pumping (...

Full description

Autores:
Martinez-Diaz, Leonel
Hernandez Herrera, Hernan
Castellanos-Gonzalez, Luis Marcos
Silva Ortega, Jorge Ivan
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/1873
Acceso en línea:
http://hdl.handle.net/20.500.12442/1873
Palabra clave:
Pump
Disc pump
Spliter blades
Boundary layer
Viscous drag
Blades lenghts
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_e82f858022172bfd8ea95622ee231fc9
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/1873
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Effects of Splitter Blade Length on Disc Pump Performance
title Effects of Splitter Blade Length on Disc Pump Performance
spellingShingle Effects of Splitter Blade Length on Disc Pump Performance
Pump
Disc pump
Spliter blades
Boundary layer
Viscous drag
Blades lenghts
title_short Effects of Splitter Blade Length on Disc Pump Performance
title_full Effects of Splitter Blade Length on Disc Pump Performance
title_fullStr Effects of Splitter Blade Length on Disc Pump Performance
title_full_unstemmed Effects of Splitter Blade Length on Disc Pump Performance
title_sort Effects of Splitter Blade Length on Disc Pump Performance
dc.creator.fl_str_mv Martinez-Diaz, Leonel
Hernandez Herrera, Hernan
Castellanos-Gonzalez, Luis Marcos
Silva Ortega, Jorge Ivan
dc.contributor.author.none.fl_str_mv Martinez-Diaz, Leonel
Hernandez Herrera, Hernan
Castellanos-Gonzalez, Luis Marcos
Silva Ortega, Jorge Ivan
dc.subject.eng.fl_str_mv Pump
Disc pump
Spliter blades
Boundary layer
Viscous drag
Blades lenghts
topic Pump
Disc pump
Spliter blades
Boundary layer
Viscous drag
Blades lenghts
description The disc pump operates using boundary layer principle and viscous drag with a relatively low efficiency. There are methods to increase head and efficiency, one of them is the placing of blades sector sor splitter blades in disc. This method has been applied only in the low viscosity fluids pumping (v<0.1 stokes). This study describe an experimental rescarch in a hight viscosity fluid (v=2 stokes) with exit angle β2 = 35° and different splitter blades Lengths (Ls) (75, 50, 25%). The prupose is to determinate the splitter blades length that achieves the most effective combination between the blade effect and boundary layer effect in order to increase the energy transmission efficiency from the impeller to the fluid. As result, it can be established that the use of spliter blades is an alternative to increase the performance of the fluid. As result, it can be established that the use of spliter blades is an alternative to increase the performance of the disc pump. The highest efficiency and head were obtained for the gapsize between two disc (b) of 12 mm using a 50% spliter blades length of the man blade length.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2018-03-16T15:54:10Z
dc.date.available.none.fl_str_mv 2018-03-16T15:54:10Z
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 1816949x
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/1873
identifier_str_mv 1816949x
url http://hdl.handle.net/20.500.12442/1873
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv Scientific Research publishing company
dc.source.eng.fl_str_mv Journal of Engineering and Applied Sciences
Vol. 12, No. 6 (2017)
institution Universidad Simón Bolívar
dc.source.uri.none.fl_str_mv http://docsdrive.com/pdfs/medwelljournals/jeasci/2017/1612-1618.pdf
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/63949afc-b240-4b52-9245-1386e5f6ffb6/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv DSpace UniSimon
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1812100473453281280
spelling Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Martinez-Diaz, Leonel12788453-0823-44c2-8ef3-f29d3a35a2fc-1Hernandez Herrera, Hernan60519c65-cd58-4069-98d0-fab4469da768-1Castellanos-Gonzalez, Luis Marcosd8923681-e484-46e8-b88d-069b60c96e80-1Silva Ortega, Jorge Ivan675511be-3168-452f-9876-e7d1fc694e04-12018-03-16T15:54:10Z2018-03-16T15:54:10Z20171816949xhttp://hdl.handle.net/20.500.12442/1873The disc pump operates using boundary layer principle and viscous drag with a relatively low efficiency. There are methods to increase head and efficiency, one of them is the placing of blades sector sor splitter blades in disc. This method has been applied only in the low viscosity fluids pumping (v<0.1 stokes). This study describe an experimental rescarch in a hight viscosity fluid (v=2 stokes) with exit angle β2 = 35° and different splitter blades Lengths (Ls) (75, 50, 25%). The prupose is to determinate the splitter blades length that achieves the most effective combination between the blade effect and boundary layer effect in order to increase the energy transmission efficiency from the impeller to the fluid. As result, it can be established that the use of spliter blades is an alternative to increase the performance of the fluid. As result, it can be established that the use of spliter blades is an alternative to increase the performance of the disc pump. The highest efficiency and head were obtained for the gapsize between two disc (b) of 12 mm using a 50% spliter blades length of the man blade length.engScientific Research publishing companyJournal of Engineering and Applied SciencesVol. 12, No. 6 (2017)http://docsdrive.com/pdfs/medwelljournals/jeasci/2017/1612-1618.pdfPumpDisc pumpSpliter bladesBoundary layerViscous dragBlades lenghtsEffects of Splitter Blade Length on Disc Pump Performancearticlehttp://purl.org/coar/resource_type/c_6501Babayigit, O., M. Ozgoren, M.H. Aksoy and O. Kocaaslan, 2012. Numerical modeling and flow analysis of splitter blades effect on a centrifugal pump performance. Master Thesis, Selcuk University Hadim Vocational School, Hadim, Konya, Turkey.Babayigit, O., M. Ozgoren, M.H. Aksoy and O. Kocaaslan, 2012. Numerical modeling and flow analysis of splitter blades effect on a centrifugal pump performance. Proceedings of the IOP Conference on Series: Earth and Environmental Science Vol. 15, August 19-23, 2012, IOP Publishing, Bristol, England, UK., pp: 032026-032029.Cavazzini, G., G. Pavesi, A. Santolin, G. Ardizzon and R. Lorenzi, 2015. Using splitter blades to improve suction performance of centrifugal impeller pumps. Proc. Inst. Mech. Eng. Part A J. Power Energy, 229: 309-323.Cherkasski, V.M., 1986. Bombas, Ventiladores, Compresores. Mir, Moscow, Russia, Pages: 373.Djebedjian, B., 2009. Theoretical model to predict the performance of centrifugal pump equipped with splitter blades. Mansoura Eng. J., 34: 50-70.Dolgushev, S.V. and S.V. Khaidarov, 2001. Simplified description of the flow in a diametral disk friction pump. J. Eng. Phys. Thermophys., 74: 745-749.Gjernes, T., 2014. Optimization of centrifugal slurry pumps through computational fluid dynamics. Master Thesis, School of Mechatronic Systems Engineering, Faculty of Applied Sciences, Simon Fraser University, Burnaby, British Columbia.Golcu, M. and Y. Pancar, 2005. Investigation of performance characteristics in a pump impeller with low blade discharge angle. World Pumps, 2005: 32-40.Golcu, M., Y. Pancar, H.S. Ergur and E.O. Goral, 2010. Prediction of head, efficiency and power characteristics in a semi-open impeller. Math. Comput. Appl., 15: 137-147.Goral, E.O., 2000. Effect of splitter blades on pump performance in semi open impellers. Master Thesis, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, Turkey.Jeon, W.H., 2005. A numerical study on the acoustic characteristics of a centrifugal impeller with a splitter. GESTS. Intl. Trans. Comput. Sci. Eng., 20: 17-28.Jianping, Y.S.Z.J.Y. and H.Y.F. Yuedeng, 2007. Effects of splitter blades on the law of inner flow within centrifugal pump impeller. Chin. J. Mech. Eng., 20: 59-63.Jinfeng, Z., Y. Shouqi, F. Yuedeng and Y. Jianping, 2013. Influence of splitter blades on the total flow field of a low-specific centrifugal pump. Master Thesis, Jiangsu University, Zhenjiang, China.Jingchun, W., 2012. Blood pump with splitter impeller blades and splitter stator vanes and methods of manufacturing. WIPO, Geneva, Switzerland. https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2012054490&recNum=3&docAn=US2011056722&queryString=(DP:%5B01.01.2011%20TO%2001.01.2013%5D%20AND%20(EN_AB:(lvad%20or%20%22heart%20pump%22%20or%20%22catheter%20pump%22)%20oKergourlay, G., M. Younsi, F. Bakir and R. Rey, 2007. Influence of splitter blades on the flow field of a centrifugal pump: Test-analysis comparison. Int. J. Rotating Mach., 2007: 1-13.Korkmaz, E., M. Golcu and C. Kurbanoglu, 2017. Effects of blade discharge angle, blade number and splitter blade length on deep well pump performance. J. Appl. Fluid Mech., 10: 529-540.Li, W.G., 2011. Blade exit angle effects on performance of a standard industrial centrifugal oil pump. J. Appl. Fluid Mech., 4: 105-119Martinez- Diaz, L., 2000. Method of increase head and efficiency at disc pump. Ph.D Thesis, University of Cienfuegos, Cienfuegos, Cuba.Misyura, V.I, B.V. Ovsyannikov and V.F. Prisnyakov, 1986. [Disc Pump (In Russian)]. Moscow Publisher, Moscow, Russia, Pages: 112.Miyamoto, H., Y. Nakashima and H. Ohba, 1992. Effects of splitter blades on the flows and characteristics in centrifugal impellers. JSME Int. J., 35: 238-246.Oliveira, M.D. and J.C. Páscoa, 2009. Analytical and experimental modeling of a viscous disc pump for MEMS applications. Proceedings of the 3rd National Conference on Fluid Mechanics, Thermodynamics and Energy (MEFTE-Braganca’09), September 17-18, 2009, Polytechnic Institute of Braganca, Braganca, Portugal, pp: 1-7.PCI., 2001. Disc pumps keep fluids moving. Paint and Coatings Industry, Ontario, Canada. http://www.pcimag.com/articles/86117-disc-pumps-keep-fluids-moving.%20Accessed%2021%20June%202015.Pacello, J. and P. Hanas, 2000. Disc pump-type pump technology for hard-to-pump applications. Proceedings of the International Symposium on Pump Users, March 5-9, 2000, George R. Brown Convention Center, Houston, Texas, pp: 69-80.Pfleiderer, C., 1960. Centrifugal pumps and turbo compressors. World Health Organization, Geneva, Switzerland.Pranit, M.P. and R.G. Todkar, 2013. An overview of effect of splitter blades on centrifugal pump performance. Intl. J. Eng. Res. Technol., 2: 2249-2252.Sensel, D.L. and M. Kowalak, 2012. Vortex pump with splitter blade impeller US 8128360 B2. Patent and Trademark Office, Washington, DC., US. https://www.google.com/patents/US8128360.Vasava, K. and J.P. Mital, 2015. A general review on effect of splitter blade on the performance of centrifugal pump. Proceedings of the 3rd Afro-Asian International Conference on Science, Engineering and Technology (AAICSET’15), March 27-28, 2015, Fields Publication, Boston, Massachusetts, pp: 81-84.Yuan, S., 1997. Advances in hydraulic design of centrifugal pumps. Proceedings of the 1997 ASME Meeting on Fluid Engineering Division Summer, June 22-26, 1997, ASME, Vancouver, British Columbia, Canada, ISBN:9780791812372, pp: 1-15.Yuan, S., J. Zhang, Y. Tang, J. Yuan and Y. Fu, 2009. Research on the design method of the centrifugal pump with splitter blades. Proceedings of the 2009 ASME Meeting on Fluids Engineering Division Summer Vol. 1, August 2-6, 2009, ASME, New York, USA., ISBN:978-0-7918-4372-7, pp: 107-120.Zhang, Y.L., S.Q. Yuan, J.F. Zhang, Y.N. Feng and J.X. Lu, 2014. Numerical investigation of the effects of splitter blades on the cavitation performance of a centrifugal pump. Proceedings of the 27th Symposium on Hydraulic Machinery and Systems (IAHR’14) Vol. 22, September 22-26, 2014, IOP Publishing, Bristol, England, UK., pp: 052003-052011.Zhou, X., Y.X. Zhang, Z.L. Ji and L. Chen, 2012. Hydraulic design and performance analysis of low specific speed centrifugal pump. Proceedings of the IOP Conference on Series: Earth and Environmental Science Vol. 15, August 19-23, 2012, IOP Publishing, Bristol, England, UK., pp: 032023-032031.ISO, 2012. Rotodynamic pumps-hydraulic performance acceptance tests-Grades 1, 2 and 3. International Organization for Standardization, Geneva, Switzerland. https://www.iso.org/standard/41202.html.LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bonga.unisimon.edu.co/bitstreams/63949afc-b240-4b52-9245-1386e5f6ffb6/download8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12442/1873oai:bonga.unisimon.edu.co:20.500.12442/18732019-04-11 21:51:24.069metadata.onlyhttps://bonga.unisimon.edu.coDSpace UniSimonbibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=