Description and use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Images

The World Health Organization indicates the top cause of death is heart disease. These diseases can be detected using several imaging modalities, especially cardiac computed tomography (CT), whose images have imperfections associated with noise and certain artifacts. To minimize the impact of these...

Full description

Autores:
Vera, Miguel
Bravo, Antonio
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/11453
Acceso en línea:
https://hdl.handle.net/20.500.12442/11453
https://doi.org/10.3390/data7080115
Palabra clave:
numerical phantoms
Cardiac dataset
Processing techniques
Artifacts
Poisson noise
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_e6ea33d31c44b8c2df96262a66031110
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/11453
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Description and use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Images
title Description and use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Images
spellingShingle Description and use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Images
numerical phantoms
Cardiac dataset
Processing techniques
Artifacts
Poisson noise
title_short Description and use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Images
title_full Description and use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Images
title_fullStr Description and use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Images
title_full_unstemmed Description and use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Images
title_sort Description and use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Images
dc.creator.fl_str_mv Vera, Miguel
Bravo, Antonio
dc.contributor.author.none.fl_str_mv Vera, Miguel
Bravo, Antonio
dc.subject.eng.fl_str_mv numerical phantoms
Cardiac dataset
Processing techniques
Artifacts
Poisson noise
topic numerical phantoms
Cardiac dataset
Processing techniques
Artifacts
Poisson noise
description The World Health Organization indicates the top cause of death is heart disease. These diseases can be detected using several imaging modalities, especially cardiac computed tomography (CT), whose images have imperfections associated with noise and certain artifacts. To minimize the impact of these imperfections on the quality of the CT images, several researchers have developed digital image processing techniques (DPIT) by which the quality is evaluated considering several metrics and databases (DB), both real and simulated. This article describes the processes that made it possible to generate and utilize six three-dimensional synthetic cardiac DBs or voxels-based numerical phantoms. An exhaustive analysis of the most relevant features of images of the left ventricle, belonging to a real CT DB of the human heart, was performed. These features are recreated in the synthetic DBs, generating a reference phantom or ground truth free of imperfections (DB1) and five phantoms, in which Poisson noise (DB2), stair-step artifact (DB3), streak artifact (DB4), both artifacts (DB5) and all imperfections (DB6) are incorporated. These DBs can be used to determine the performance of DPIT, aimed at decreasing the effect of these imperfections on the quality of cardiac images.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-11-22T15:47:38Z
dc.date.available.none.fl_str_mv 2022-11-22T15:47:38Z
dc.date.issued.none.fl_str_mv 2022
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.citation.eng.fl_str_mv Vera, M., Bravo, A., & Medina, R. (2022). Description and Use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Images. Data, 7(8), 115. https://doi.org/10.3390/data7080115
dc.identifier.issn.none.fl_str_mv 23065729
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/11453
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/data7080115
identifier_str_mv Vera, M., Bravo, A., & Medina, R. (2022). Description and Use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Images. Data, 7(8), 115. https://doi.org/10.3390/data7080115
23065729
url https://hdl.handle.net/20.500.12442/11453
https://doi.org/10.3390/data7080115
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.eng.fl_str_mv pdf
dc.publisher.eng.fl_str_mv MDPI
dc.source.eng.fl_str_mv Data
Vol. 7 Issue 8 (2022)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/9912e7f1-4a16-4cb8-bc8c-a37b4208ec5a/download
https://bonga.unisimon.edu.co/bitstreams/47848ea3-0430-48fb-8102-6317dadb4b46/download
https://bonga.unisimon.edu.co/bitstreams/c278e96c-f342-4897-a54e-58d09fab5fd3/download
https://bonga.unisimon.edu.co/bitstreams/a2c24292-0090-4a09-b241-a7ce763853f2/download
https://bonga.unisimon.edu.co/bitstreams/ba34d024-6a52-45d1-874d-e5890797fd5f/download
https://bonga.unisimon.edu.co/bitstreams/1fb2713b-cccb-4648-b106-e2146050e4b6/download
https://bonga.unisimon.edu.co/bitstreams/3193229d-9b5d-48e7-9da8-71562eada11f/download
bitstream.checksum.fl_str_mv dd58f8b3d7e1357496a57f737519ff66
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
dd0cbdeab67d823acd43f9a4ed8afad7
dd0cbdeab67d823acd43f9a4ed8afad7
8aa1ac66fa67f942816f572af82a34cb
8aa1ac66fa67f942816f572af82a34cb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100533415051264
spelling Vera, Miguelc485e4e3-5bbd-4d00-8ec7-e5bc8a0a21e3Bravo, Antonio07aba3dd-3344-4237-9ad4-3d40d655e9152022-11-22T15:47:38Z2022-11-22T15:47:38Z2022Vera, M., Bravo, A., & Medina, R. (2022). Description and Use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Images. Data, 7(8), 115. https://doi.org/10.3390/data708011523065729https://hdl.handle.net/20.500.12442/11453https://doi.org/10.3390/data7080115The World Health Organization indicates the top cause of death is heart disease. These diseases can be detected using several imaging modalities, especially cardiac computed tomography (CT), whose images have imperfections associated with noise and certain artifacts. To minimize the impact of these imperfections on the quality of the CT images, several researchers have developed digital image processing techniques (DPIT) by which the quality is evaluated considering several metrics and databases (DB), both real and simulated. This article describes the processes that made it possible to generate and utilize six three-dimensional synthetic cardiac DBs or voxels-based numerical phantoms. An exhaustive analysis of the most relevant features of images of the left ventricle, belonging to a real CT DB of the human heart, was performed. These features are recreated in the synthetic DBs, generating a reference phantom or ground truth free of imperfections (DB1) and five phantoms, in which Poisson noise (DB2), stair-step artifact (DB3), streak artifact (DB4), both artifacts (DB5) and all imperfections (DB6) are incorporated. These DBs can be used to determine the performance of DPIT, aimed at decreasing the effect of these imperfections on the quality of cardiac images.pdfengMDPIAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2DataVol. 7 Issue 8 (2022)numerical phantomsCardiac datasetProcessing techniquesArtifactsPoisson noiseDescription and use of Three-Dimensional Numerical Phantoms of Cardiac Computed Tomography Imagesinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Kroft, L.; De Roos, A.; Geleijns, J. Artifacts in ECG–synchronized MDCT coronary angiography. Am. J. Roentgenol. 2007, 189, 581–591.Shim, S.; Kim, Y.; Lim, S. Improvement of image quality with β–blocker premedication on ECG–gated 16–MDCT coronary angiography. Am. J. Roentgenol. 2005, 184, 649–654.Niwa, S.; Ichikawa, K.; Kawashima, H.; Takata, T.; Minami, S.; Mitsui, W. Reduction of streak artifacts caused by low photon counts utilizing an image-based forward projection in computed tomography. Comput. Biol. Med. 2021, 135, 104583.Faletra, F.; Pandian, N.; Ho, S. Anatomy of the Heart by Multislice Computed Tomography; Wiley: Hoboken, NJ, USA, 2008.Hong, C.; Becker, C.; Huber, A.; Schoepf, U.; Ohnesorge, B.; Knez, A.; Reiser, M. ECG–gated reconstructed multi–detector row CT coronary angiography: Effect of varying trigger delay on image quality. Radiology 2001, 220, 712–717.Rydber, J.; Buckwalter, K.; Caldemeyer, K.; Phillips, M.; Conces, D.; Aisen, A.; Persohn, S.; Kopecky, K. Multisection CT: Scanning techniques and clinical applications. RadioGraphics 2000, 20, 1787–1806.Clemente, J.; Bravo, A.; Medina, R. Using morphological and clustering analysis for left ventricle detection in MSCT cardiac images. In Proceedings of the IEEE International Symposium on Signal Processing and Information Technology, Sarajevo, Bosnia and Herzegovina, 16–19 December 2008; pp. 264–269.Primak, A.; McCollough, C.; Bruesewitz, M.; Zhang, J.; Fletcher, J. Relationship between noise, dose, and pitch in cardiacmulti–detector row CT. Radiographics 2006, 26, 1785–1794.Chan, R.; Chenz, K. Multilevel algorithm for a poisson noise removal model with total-variation regularization. Int. J. Comput. Math. 2007, 1, 1183–1198.Zanella, R.; Boccacci, P.; Zanni, L.; Bertero, M. Efficient gradient projection methods for edge–preserving removal of Poisson noise. Inverse Probl. 2009, 25, 045010.Maiera, A.; Wigstrm, L.; Hofmann, H.; Hornegger, J.; Zhu, L.; Strobel, N.; Fahrig, R. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT. Med. Phys. 2011, 38, 5896–5909.McGarry, C.; Grattan, L.; Ivory, A.; Leek, F.; Liney, G.; Liu, Y.; Miloro, P.; Rai, R.; Robinson, A.; Shih, A.; et al. Tissue mimicking materials for imaging and therapy phantoms: A review. Phys. Med. Biol. 2020, 65, 44.Roy, C.; Marini, D.; Segars, W.; Seed, M.; Macgowan, C. Fetal XCMR: A numerical phantom for fetal cardiovascular magnetic resonance imaging. J. Cardiovasc. Magn. Reson. 2019, 21, 29.Bravo, A.; Clemente, J.; Vera, M.; Avila, J.; Medina, R. A hybrid boundary–region left ventricle segmentation in computed tomography. In Proceedings of the 5th VISAPP, Angers, France, 17–21 May 2010; pp. 107–114.Vera, M. Segmentación de Estructuras Cardiacas en Imágenes de Tomografía Computarizada Multi-Corte. Ph.D. Thesis, Universidad de Los Andes, Mérida, Venezuela, 2014.Li, F.; Rajchl, M.; White, J.; Goela, A.; Peters, T. Ultrasound Guidance for Beating Heart Mitral Valve Repair Augmented by Synthetic Dynamic CT. IEEE Trans. Med. Imaging 2015, 34, 2025–2035.Müller, M.; Paganelli, C.; Keall, P. A phantom study to create synthetic CT from orthogonal two-dimensional cine MRI and evaluate the effect of irregular breathing. In Proceedings of the 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 4162–4165.Lyu, F.; Ye, M.; Ma, A.; Yip, T.; Wong, H.; Yuen, P. Learning from Synthetic CT Images via Test-Time Training for Liver Tumor Segmentation. IEEE Trans. Med. Imaging 2022.Nomura, Y.; Watanabe, H.; Manila, N.; Asai, S.; Kurabayashi, T. Evaluation of streak metal artifacts in cone beam computed tomography by using the Gumbel distribution: A phantom study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 131, 494–502.Dossing, A.; Müller, F.; Becce, F.; Stamp, L.; Bliddal, H.; Boesen., M. Dual-energy computed tomography can detect and characterize monosodium urate, calcium pyrophosphate and hydroxyapatite: A phantom study on diagnostic performance. Osteoarthr. Cartil. 2021, 29, S320–S321.Medici, S.; Desorgher, L.; Carbonez, P.; Damet, J.; Bochud, F.; Pitzschke, A. Impact of the phantom geometry on the evaluation of the minimum detectable activity following a radionuclide intake: From physical to numerical phantoms. Radiat. Meas. 2020, 139, 106485.Lubis, L.; Basith, R.; Hariyati, I.; Ryangga, D.; Mart, T.; Bosmans, H.; Soejoko, D. Novel phantom for performance evaluation of contrast-enhanced 3D rotational angiography. Phys. Med. 2021, 90, 91–98.Pasyar, P.; Masjoodi, S.; Montazeriani, Z.; Makkiabadi, B. A digital viscoelastic liver phantom for investigation of elastographic measurements. Comput. Biol. Med. 2020, 127, 104078.Shepp, L.; Logan, B. The Fourier Reconstruction of a Head Section. IEEE Trans. Nucl. Sci. 1974, 21, 21–43.Koay, C.; Sarlls, J.; Özarslan, E. Three-Dimensional Analytical Magnetic Resonance Imaging Phantom in the Fourier Domain. Magn. Reson. Med. 2007, 58, 430–436.Collins, D.; Zijdenbos, A.; Kollokian, V.; Sled, J.; Kabani, N.; Holmes, C.; Evans, C. Design and construction of a realistic digital brain phantom. IEEE Trans. Med. Imaging 1998, 17, 463–468.Trawiński, Z.; Wójcik, J.; Nowicki, A.; Olszewski, R.; Balcerzak, A.; Frankowska, E.; Zegadło, A.; Rydzyński, P. Strain examinations of the left ventricle phantom by ultrasound and multislices computed tomography imaging. Biocybern. Biomed. Eng. 2015, 35, 255–263.Bravo, A.; Vera, M.; Huérfano, Y.; Manrique, Y. A comprehensive study of a similarity criterion in cardiac computerized tomography images enhancement. Rev. Fac. Ing. Univ. Antioq. 2020, 102, 51–61.Pratt, W. Digital Image Processing; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2007.Petrou, M.; Bosdogianni, P. Image Processing the Fundamentals; Wiley: Chichester, UK, 2003.Devroye, L. Non-Uniform Random Variate Generation; Springer: New York, NY, USA, 1986.Knuth, D. The art of computer programming. In Seminumerical Algorithms, 3rd ed.; Addison-Wesley: Boston, MA, USA, 1997; Volume 2.Ahrens, J.; Dieter, U. Computer generation of Poisson deviates from modified normal distributions. ACM Trans. Math. Softw. 1982, 8, 163–179.Haralick, R.; Shapiro, L. Computer and Robot Vision. Boston; Addison-Wesley: Boston, MA, USA, 1992.Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Processing 2004, 13, 600–612.Bravo, A.; Medina, R. An unsupervised clustering framework for automatic segmentation of left ventricle cavity in human heart angiograms. Comput. Med. Imaging Graph. 2008, 32, 386–408.Vera, M.; Medina, R.; Del Mar, A.; Arellano, J.; Huérfano, Y.; Bravo, A. An automatic technique for left ventricle segmentation from msct cardiac volumes. J. Phys. Conf. Ser. 2019, 1160, 01200.Vera, M.; Bravo, A.; Garreau, M.; Medina, R. Similarity enhancement for automatic segmentation of cardiac structures in computed tomography volumes. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, USA; 2011; pp. 8094–8097.Chacón, G.; Rodríguez, J.E.; Bermúdez, V.; Flórez, A.; Del Mar, A.; Pardo, A.; Lameda, C.; Madriz, D.; Bravo, A.J. A score function as quality measure for cardiac image enhancement techniques assessment. Rev. Latinoam. Hipertens. 2019, 14, 180–186.Meijering, H. Image Enhancement in Digital X–ray Angiography. Ph.D. Thesis, Utrecht University, Utrecht, The Netherlands, 2000.Perona, P.; Malik, J. Scalespace and edge detection using anisotropic diffusion. IEEE Trans. Patt. Anal. Mach. Intell. 1990, 12, 629–639.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf4043125https://bonga.unisimon.edu.co/bitstreams/9912e7f1-4a16-4cb8-bc8c-a37b4208ec5a/downloaddd58f8b3d7e1357496a57f737519ff66MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/47848ea3-0430-48fb-8102-6317dadb4b46/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/c278e96c-f342-4897-a54e-58d09fab5fd3/download733bec43a0bf5ade4d97db708e29b185MD53TEXT2022_MDPI_Descrip and Use of Three-Dim.pdf.txt2022_MDPI_Descrip and Use of Three-Dim.pdf.txtExtracted texttext/plain55957https://bonga.unisimon.edu.co/bitstreams/a2c24292-0090-4a09-b241-a7ce763853f2/downloaddd0cbdeab67d823acd43f9a4ed8afad7MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain55957https://bonga.unisimon.edu.co/bitstreams/ba34d024-6a52-45d1-874d-e5890797fd5f/downloaddd0cbdeab67d823acd43f9a4ed8afad7MD56THUMBNAIL2022_MDPI_Descrip and Use of Three-Dim.pdf.jpg2022_MDPI_Descrip and Use of Three-Dim.pdf.jpgGenerated Thumbnailimage/jpeg5504https://bonga.unisimon.edu.co/bitstreams/1fb2713b-cccb-4648-b106-e2146050e4b6/download8aa1ac66fa67f942816f572af82a34cbMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5504https://bonga.unisimon.edu.co/bitstreams/3193229d-9b5d-48e7-9da8-71562eada11f/download8aa1ac66fa67f942816f572af82a34cbMD5720.500.12442/11453oai:bonga.unisimon.edu.co:20.500.12442/114532024-08-14 21:54:51.322http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u