Kidney-gut crosstalk in renal disease

Introduction The colon has an important role in managing nitrogenous waste products, electrolytes, and mineral balance during kidney diseases. However, colonic microbiota produces uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, in chronic kidney disease (CKD) patients, which due to thei...

Full description

Autores:
Colombo, Iara
Aiello-Battan, Florencia
Rosario Elena
Ruiz, Agustina
Petraglia, Lucas
Musso, Carlos G.
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/6815
Acceso en línea:
https://hdl.handle.net/20.500.12442/6815
https://doi.org/10.1007/s11845-020-02437-7
Palabra clave:
Crosstalk
Gut
Kidney
Rights
restrictedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_db5ca92cdd2cf1b1ac88eface0523ea9
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/6815
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Kidney-gut crosstalk in renal disease
title Kidney-gut crosstalk in renal disease
spellingShingle Kidney-gut crosstalk in renal disease
Crosstalk
Gut
Kidney
title_short Kidney-gut crosstalk in renal disease
title_full Kidney-gut crosstalk in renal disease
title_fullStr Kidney-gut crosstalk in renal disease
title_full_unstemmed Kidney-gut crosstalk in renal disease
title_sort Kidney-gut crosstalk in renal disease
dc.creator.fl_str_mv Colombo, Iara
Aiello-Battan, Florencia
Rosario Elena
Ruiz, Agustina
Petraglia, Lucas
Musso, Carlos G.
dc.contributor.author.none.fl_str_mv Colombo, Iara
Aiello-Battan, Florencia
Rosario Elena
Ruiz, Agustina
Petraglia, Lucas
Musso, Carlos G.
dc.subject.eng.fl_str_mv Crosstalk
Gut
Kidney
topic Crosstalk
Gut
Kidney
description Introduction The colon has an important role in managing nitrogenous waste products, electrolytes, and mineral balance during kidney diseases. However, colonic microbiota produces uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, in chronic kidney disease (CKD) patients, which due to their proinflammatory properties contribute to CKD progression. Conversely, in acute renal injury patients, intestinal microbiota could reduce inflammation by secreting short-chain fatty acids and inducing a renal protective immune response. However, since the intestines are the most frequently affected organ in advanced sepsis, colonic microbiota can also represent a negative factor for kidney health in this scenario. Conclusion In the present review, the main characteristics of kidney-gut crosstalk are described.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-11-26T15:54:44Z
dc.date.available.none.fl_str_mv 2020-11-26T15:54:44Z
dc.date.issued.none.fl_str_mv 2020
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.isbn.none.fl_str_mv 00211265
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/6815
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1007/s11845-020-02437-7
identifier_str_mv 00211265
url https://hdl.handle.net/20.500.12442/6815
https://doi.org/10.1007/s11845-020-02437-7
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.mimetype.eng.fl_str_mv pdf
dc.publisher.eng.fl_str_mv Springer Nature
dc.source.eng.fl_str_mv Irish Journal of Medical Science
dc.source.none.fl_str_mv Vol. 189, No. 5, (2020)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/dd5263d1-79cc-4bd2-8b60-9d2cebe9f57a/download
https://bonga.unisimon.edu.co/bitstreams/3e2a239d-f9bd-49ed-a308-56299f8c86da/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100483819503616
spelling Colombo, Iarad9d2e942-d05c-4b2a-b734-a625fb25b28eAiello-Battan, Florencia06a64798-1818-4094-9181-7ae2df470307Rosario Elena797804c5-8779-40a6-a3bf-9ef4433568c0Ruiz, Agustina4cd3a79d-adab-47fc-9dbd-33334be4d188Petraglia, Lucasc6f55690-d1bc-475b-b4c6-10643343ea71Musso, Carlos G.b310094b-baeb-4838-bde5-206ff47448242020-11-26T15:54:44Z2020-11-26T15:54:44Z202000211265https://hdl.handle.net/20.500.12442/6815https://doi.org/10.1007/s11845-020-02437-7Introduction The colon has an important role in managing nitrogenous waste products, electrolytes, and mineral balance during kidney diseases. However, colonic microbiota produces uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, in chronic kidney disease (CKD) patients, which due to their proinflammatory properties contribute to CKD progression. Conversely, in acute renal injury patients, intestinal microbiota could reduce inflammation by secreting short-chain fatty acids and inducing a renal protective immune response. However, since the intestines are the most frequently affected organ in advanced sepsis, colonic microbiota can also represent a negative factor for kidney health in this scenario. Conclusion In the present review, the main characteristics of kidney-gut crosstalk are described.pdfengSpringer NatureAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecIrish Journal of Medical ScienceVol. 189, No. 5, (2020)CrosstalkGutKidneyKidney-gut crosstalk in renal diseaseinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Muso CG (2020) Biosemiotic medicine: from an effect-based medicine to a process-based medicine. Arch Argent Pediatr 118(5): e449–e453Poesen R, Meijers B, Evenepoel P (2013) The colon: an overlooked site for therapeutics in dialysis patients. Semin Dial 26(3):323–332Ranganathan N, Ranganathan P, Friedman EA et al (2010) Pilot study of probiotic dietary supplementation for promoting healthy kidney function in patients with chronic kidney disease. Adv Ther 27(9):634–647. https://doi.org/10.1007/s12325-010-0059-9Musso CG (2004) Potassium metabolism in patients with chronic kidney disease. Part II: patients on dialysis (stage 5). Int Urol Nephrol 36(3):469–472Vaziri ND (2016) Effect of synbiotic therapy on gut-derived uremic toxins and the intestinal microbiome in patients with CKD. Clin J Am Soc Nephrol 11(2):199–201Mafra D, Lobo JC, Barros AF et al (2014) Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol 9(3):399–410Gong J, Noel S, Pluznick J, Hamad A et al (2019) Gut microbiotakidney cross-talk in acute kidney injury. Semin Nephrol 39(1):107– 116Evenepoel P, Meijers BKI, Bammens BRM, Verbeke K (2009) Uremic toxins originating from colonic microbial metabolism. Kidney Int Suppl 114:S12–S19Crespo-Salgado J, Vehaskari VM, Stewart T et al (2016) Intestinal microbiota in pediatric patients with end stage renal disease: a Midwest Pediatric Nephrology Consortium study. Microbiome. 4(1):50de Andrade L, Ishikawa-Ramos C, Cuppari L (2017) The cross-talk between the kidney and the gut: implications for chronic kidney disease. Nutrire 42(27):2–14. https://doi.org/10.1186/s41110-017- 0054-xKanbay M, Onal E, Afsar B et al (2018) The crosstalk of gut microbiota and chronic kidney disease: role of inflammation, proteinuria, hypertension, and diabetes mellitus. Int Urol Nephrol 50: 1453–1466. https://doi.org/10.1007/s11255-018-1873-2Pahl MV, Vaziri ND (2015) The chronic kidney disease-colonic axis. Semin Dial 28:459–463Ritz E (2011) Intestinal-renal syndrome: mirage or reality? Blood Purif 31:70–76Sirich TL (2015) Dietary protein and fiber in end stage renal disease. Semin Dial 28(1):75–80. https://doi.org/10.1111/sdi.12315Meyer TW, Hostetter TH (2012) Uremic solutes from colon microbes. Kidney Int 81(10):949–954Soulage CO, Koppe L, Fouque D (2013) Protein-bound uremic toxins. New targets to prevent insulin resistance and dysmetabolism in patients with chronic kidney disease. J Ren Nutr 23:464–466Neirynck N, Glorieux G, Schepers E et al (2013) Review of proteinbound toxins, possibility for blood purification therapy. Blood Purif 35:45–50Niwa T (2011) Role of indoxyl sulfate in the progression of chronic kidney disease and cardiovascular disease: experimental and clinical effects of oral sorbent AST-120. Ther Apher Dial 15:120–124Niwa T (2013) Targeting protein-bound uremic toxins in chronic kidney disease. Expert Opin Ther Targets 17(11):1287–1301Aronov PA, Luo FJ, Plummer NS et al (2011) Colonic contribution to uremic solutes. J Am Soc Nephrol 22:1769–1776Leong S, Sirich T (2016) Indoxyl sulfate-review of toxicity and therapeutic strategies. Toxins (Basel) 8(12):E35Risso MA, Sallustio S, Sueiro V et al (2019) The Importance of tubular function in chronic kidney disease. Int J Nephrol Renov Dis 12:257–262. https://doi.org/10.2147/IJNRD.S216673Enomoto A, Takeda M, Tojo A et al (2002) Role of organic anion transporters in the tubular transport of indoxyl sulfate and the induction of its nephrotoxicity. J Am Soc Nephrol 13(7):1711–1720Zhang J, Ankawi G, Sun J et al (2018) Gut-kidney crosstalk in septic acute kidney injury. Crit Care 22(1):117. https://doi.org/10. 1186/s13054-018-2040-yMeyer TW, Hostetter TH (2007) Uremia. N Engl J Med 357(13): 1316–1325Patel K, Luo F, Plummer N et al (2012) The production of p-cresol sulfate and indoxyl sulfate in vegetarians versus omnivores. Clin J Am Soc Nephrol 7:982–988. https://doi.org/10.2215/CJN. 12491211Sirich TL, Plummer NS, Gardner CD et al (2014) Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients. Clin J Am Soc Nephrol 9(9):1603–1610Vaziri ND, Liu SM, Lau WL et al (2014) High amylose resistant starch diet ameliorates oxidative stress, inflammation, and progression of chronic kidney disease. PLoS One 9(12):e114881Marzocco S, Dal Piaz F, Di Micco L et al (2013) Very low protein diet reduces indoxyl sulfate levels in chronic kidney disease. Blood Purif 35:196–201Rossi M, Johnson D, Morrison M et al (2016) Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin J Am Soc Nephrol 11:223–231. https://doi.org/ 10.2215/CJN.05240515Meijers B, De Preter V, Verbeke K et al (2010) p-Cresyl sulfate serum concentrations in haemodialysis patients are reduced by the prebiotic oligofructose-enriched inulin. Nephrol Dial Transplant 25:219–224. https://doi.org/10.1093/ndt/gfp414Shoji T, Wada A, Inoue K et al (2007) Prospective randomized study evaluating the efficacy of the spherical adsorptive carbon AST-120 in chronic kidney disease patients with moderate decrease in renal function. Nephron Clin Pract 105:c99–c107. https://doi. org/10.1159/000097985Madero M, Cano KB, Campos I et al (2019) Removal of protein bound uremic toxins during hemodialysis using a binding competitor. Clin J Am Soc Nephrol 14(3):394–402. https://doi.org/10. 2215/CJN.05240418Cornelis T, Eloot S, Vanholder R et al (2015) Protein-bound uraemic toxins, dicarbonyl stress and advanced glycation end products in conventional and extended haemodialysis and haemodiafiltration. Nephrol Dial Transplant 30(8):1395–1402. https://doi.org/10.1093/ndt/gfv038Camacho O, Rosales M, Shafi T et al (2016) Effect of a sustained difference in hemodialytic clearance on the plasma levels of pcresol sulfate and indoxyl sulfate. Nephrol Dial Transplant 31: 1335–1341. https://doi.org/10.1093/ndt/gfw100CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/dd5263d1-79cc-4bd2-8b60-9d2cebe9f57a/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/3e2a239d-f9bd-49ed-a308-56299f8c86da/download733bec43a0bf5ade4d97db708e29b185MD5320.500.12442/6815oai:bonga.unisimon.edu.co:20.500.12442/68152024-08-14 21:52:51.571http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalmetadata.onlyhttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u