Usefulness of cutting planes in the hierarchical segmentation of cardiac anatomical structures
A spatial geometric plane is defined by the three-dimensional coordinates of a pair of spatial points and the direction that the normal vector establishes, which is formed by joining those points by means of an oriented line segment. This type of planes, in three-dimensional images, is extremely use...
- Autores:
-
Vera, M
Valbuena, O
Huérfano, Y
Vera, M I
Gelvez-Almeida, E
Salazar-Torres, J
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/5114
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/5114
- Palabra clave:
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_d9e012188afc414183c25d2c3a28cba0 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/5114 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Usefulness of cutting planes in the hierarchical segmentation of cardiac anatomical structures |
title |
Usefulness of cutting planes in the hierarchical segmentation of cardiac anatomical structures |
spellingShingle |
Usefulness of cutting planes in the hierarchical segmentation of cardiac anatomical structures |
title_short |
Usefulness of cutting planes in the hierarchical segmentation of cardiac anatomical structures |
title_full |
Usefulness of cutting planes in the hierarchical segmentation of cardiac anatomical structures |
title_fullStr |
Usefulness of cutting planes in the hierarchical segmentation of cardiac anatomical structures |
title_full_unstemmed |
Usefulness of cutting planes in the hierarchical segmentation of cardiac anatomical structures |
title_sort |
Usefulness of cutting planes in the hierarchical segmentation of cardiac anatomical structures |
dc.creator.fl_str_mv |
Vera, M Valbuena, O Huérfano, Y Vera, M I Gelvez-Almeida, E Salazar-Torres, J |
dc.contributor.author.none.fl_str_mv |
Vera, M Valbuena, O Huérfano, Y Vera, M I Gelvez-Almeida, E Salazar-Torres, J |
description |
A spatial geometric plane is defined by the three-dimensional coordinates of a pair of spatial points and the direction that the normal vector establishes, which is formed by joining those points by means of an oriented line segment. This type of planes, in three-dimensional images, is extremely useful as an alternative solution to the problem of low contrast that exhibit the anatomical structures present in cardiac computed tomography images. To do this, after using a predetermined filter bank and in order to define a region of interest, a smart operator based on least squares support vector machines is trained and validated in order to detect the aforementioned coordinates which enables the location of the plane, in the three-dimensional space that contains the considered images. Once the structure that is required to segment is identified, a discriminant function is used that cancels all information not linked to this structure. In this work, the segmentation of the left ventricle, based on region growing technique, is firstly considered and then the left atrium is segmented considering region growing technique and an inverse discriminant function. The results show an excellent correspondence relationship when the spatial union of both structures is made. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-15T20:11:40Z |
dc.date.available.none.fl_str_mv |
2020-04-15T20:11:40Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.eng.fl_str_mv |
article |
dc.identifier.issn.none.fl_str_mv |
17426596 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/5114 |
identifier_str_mv |
17426596 |
url |
https://hdl.handle.net/20.500.12442/5114 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.eng.fl_str_mv |
pdf |
dc.publisher.eng.fl_str_mv |
IOP Publishing |
dc.source.eng.fl_str_mv |
Journal of Physics: Conference Series Vol. 1408 (2019) |
institution |
Universidad Simón Bolívar |
dc.source.uri.eng.fl_str_mv |
https://iopscience.iop.org/article/10.1088/1742-6596/1408/1/012005 |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/ded5d811-6c06-45fe-b71b-b822a44118d6/download https://bonga.unisimon.edu.co/bitstreams/f57a8f56-7665-4e06-94cf-41533ded08d1/download https://bonga.unisimon.edu.co/bitstreams/39bd72a4-805b-49f6-af93-008572b1f0ec/download https://bonga.unisimon.edu.co/bitstreams/89adb232-053b-4a74-9db8-36ed9cc17ff9/download https://bonga.unisimon.edu.co/bitstreams/90204745-c5db-4c2f-85a0-59d8b4fc3b34/download https://bonga.unisimon.edu.co/bitstreams/6df9c06f-c18f-4245-a36e-9923a4e5d517/download https://bonga.unisimon.edu.co/bitstreams/d70805e3-6838-4e86-b581-e5e2fb67ac72/download |
bitstream.checksum.fl_str_mv |
793d0ba7de0ca296a02687728fab856f 4460e5956bc1d1639be9ae6146a50347 733bec43a0bf5ade4d97db708e29b185 3e635de77aaf74554193c6f4964f53cb bc4b80591ccb702d1e09a9f55a642383 47914e9d686c80a042b1ad3d41c30ad1 fb8110f00038e72a3838f86a94791bf3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076123774976000 |
spelling |
Vera, M847eada8-99d3-4ff1-a613-ae3f62c30f9eValbuena, O4286f2e0-ce46-49ce-a106-bd00c21a76e9Huérfano, Y001cc35e-75ac-48b8-9fd0-3c22464ff80fVera, M I4c675edd-c7b6-4fee-87e2-feb90cfc363eGelvez-Almeida, E55062614-d175-4da1-834a-d7e54dcc92deSalazar-Torres, J40a2a6c9-3e39-4994-9b5a-1c6112bd80002020-04-15T20:11:40Z2020-04-15T20:11:40Z201917426596https://hdl.handle.net/20.500.12442/5114A spatial geometric plane is defined by the three-dimensional coordinates of a pair of spatial points and the direction that the normal vector establishes, which is formed by joining those points by means of an oriented line segment. This type of planes, in three-dimensional images, is extremely useful as an alternative solution to the problem of low contrast that exhibit the anatomical structures present in cardiac computed tomography images. To do this, after using a predetermined filter bank and in order to define a region of interest, a smart operator based on least squares support vector machines is trained and validated in order to detect the aforementioned coordinates which enables the location of the plane, in the three-dimensional space that contains the considered images. Once the structure that is required to segment is identified, a discriminant function is used that cancels all information not linked to this structure. In this work, the segmentation of the left ventricle, based on region growing technique, is firstly considered and then the left atrium is segmented considering region growing technique and an inverse discriminant function. The results show an excellent correspondence relationship when the spatial union of both structures is made.pdfengIOP PublishingAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Journal of Physics: Conference SeriesVol. 1408 (2019)https://iopscience.iop.org/article/10.1088/1742-6596/1408/1/012005Usefulness of cutting planes in the hierarchical segmentation of cardiac anatomical structuresarticlearticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Vera M 2014 Segmentación de estructuras cardiacas en imágenes de tomografía computarizada multicorte (Mérida: Universidad de Los Andes)Bravo A, Mantilla J, Clemente J, Vera M, Medina R 2010 Left ventricle segmentation and motion analysis in multi-slice computerized tomography Biomedical image analysis and machine learning technologies: applications and techniques ed F Gonzalez (New York: Medical Information Science Reference) p 307Zheng Y, Barbu A, Georgescu B, Scheuering M, Comaniciu D 2008 Four–chamber heart modeling and automatic segmentation for 3d cardiac ct volumes using marginal space learning and steerable features IEEE Transactions on Medical Imaging 27(11) 1668Huérfano Y, Vera M, Del Mar A, Bravo A 2019 Integrating a gradient–based difference operator with machine learning techniques in right heart segmentation J. Phys. Conf. Ser. 1160 012003González R, Woods R 2001 Digital image processing (New Jersey: Prentice Hall)Pratt W 2007 Digital image processing (New York: John Wiley & Sons Inc)Koenderink J 1984 The structure of images Biological Cybernetics 50 363Primak A, McCollough C, Bruesewitz M, Zhang J, Fletcher J 2006 Relationship between noise, dose, and pitch in cardiac multi–detector row ct Radiographics 26(6) 1785Vera M, Medina R, Del Mar A, Arellano J, Huérfano Y, Bravo A 2019 An automatic technique for left ventricle segmentation from msct cardiac volumes J. Phys. Conf. Ser. 1160 012001Bravo A, Vera M, Garreau M, Medina R 2011 Three–dimensional segmentation of ventricular heart chambers from multi–slice computerized tomography: An hybrid approach Proc. Digital Information and Communication Technology and Its Applications (France: Springer) 166 287Petrou M, Bosdogianni P 2003 Image processing the fundamentals (UK: Wiley)Dice L 1945 Measures of the amount of ecologic association between species Ecology 26(3) 29ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf1179421https://bonga.unisimon.edu.co/bitstreams/ded5d811-6c06-45fe-b71b-b822a44118d6/download793d0ba7de0ca296a02687728fab856fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/f57a8f56-7665-4e06-94cf-41533ded08d1/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/39bd72a4-805b-49f6-af93-008572b1f0ec/download733bec43a0bf5ade4d97db708e29b185MD53TEXTUsefulness_cutting_planes_hierarchical segmentation_CAS.pdf.txtUsefulness_cutting_planes_hierarchical segmentation_CAS.pdf.txtExtracted texttext/plain15502https://bonga.unisimon.edu.co/bitstreams/89adb232-053b-4a74-9db8-36ed9cc17ff9/download3e635de77aaf74554193c6f4964f53cbMD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain16032https://bonga.unisimon.edu.co/bitstreams/90204745-c5db-4c2f-85a0-59d8b4fc3b34/downloadbc4b80591ccb702d1e09a9f55a642383MD56THUMBNAILUsefulness_cutting_planes_hierarchical segmentation_CAS.pdf.jpgUsefulness_cutting_planes_hierarchical segmentation_CAS.pdf.jpgGenerated Thumbnailimage/jpeg1293https://bonga.unisimon.edu.co/bitstreams/6df9c06f-c18f-4245-a36e-9923a4e5d517/download47914e9d686c80a042b1ad3d41c30ad1MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg3340https://bonga.unisimon.edu.co/bitstreams/d70805e3-6838-4e86-b581-e5e2fb67ac72/downloadfb8110f00038e72a3838f86a94791bf3MD5720.500.12442/5114oai:bonga.unisimon.edu.co:20.500.12442/51142024-08-14 21:53:05.313http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |