Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis
The selection of input and output variables is a key step in evaluating the relative efficiency of decision- making units (DMUs) in data envelopment analysis (DEA). In this paper, we present a methodology based on Monte Carlo simulations and bootstrapping for calculating the critical values of relev...
- Autores:
-
Villanueva-Cantillo, Jeyms
Munoz-Marquez, Manuel
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/8028
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/8028
https://doi.org/10.1016/j.ejor.2020.08.021
https://www.sciencedirect.com/science/article/pii/S0377221720307293
- Palabra clave:
- Data envelopment analysis
Variable selection
Critical values
Monte Carlo simulations
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_d4c6ea9ce51ca1118dab6afea489fc21 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/8028 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis |
title |
Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis |
spellingShingle |
Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis Data envelopment analysis Variable selection Critical values Monte Carlo simulations |
title_short |
Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis |
title_full |
Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis |
title_fullStr |
Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis |
title_full_unstemmed |
Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis |
title_sort |
Methodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysis |
dc.creator.fl_str_mv |
Villanueva-Cantillo, Jeyms Munoz-Marquez, Manuel |
dc.contributor.author.none.fl_str_mv |
Villanueva-Cantillo, Jeyms Munoz-Marquez, Manuel |
dc.subject.eng.fl_str_mv |
Data envelopment analysis Variable selection Critical values Monte Carlo simulations |
topic |
Data envelopment analysis Variable selection Critical values Monte Carlo simulations |
description |
The selection of input and output variables is a key step in evaluating the relative efficiency of decision- making units (DMUs) in data envelopment analysis (DEA). In this paper, we present a methodology based on Monte Carlo simulations and bootstrapping for calculating the critical values of relevance measures in variable selection methods in DEA. Additionally, we define a set of metrics to study the methods’ performance when using such critical values. We conducted an extensive simulation study, applying the proposed methodology to two variable selection methods in 28 single-output model specifications (i.e., different number of inputs and DMUs in the DEA model) under multiple scenarios, varying factors related to the functional form of the production function, the probability of an input being relevant in the model, the probability distribution of the inputs, and the theoretical efficiencies of the DMUs. The simulation study shows that (i) our proposed methodology yields consistent results for the two methods studied, in terms of the generated critical values and the performance metrics, and (ii) for most model specifications, the critical values can be estimated with a linear model with a high adjusted R 2 , using factors related to the input probability distribution and the probability of an input being relevant as independent variables. Furthermore, we describe and compare the performance of the two methods studied, provide guidelines for using our methodology and the results presented in this paper, and propose suggestions for future research. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-07-22T17:01:41Z |
dc.date.available.none.fl_str_mv |
2021-07-22T17:01:41Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.spa.spa.fl_str_mv |
Artículo científico |
dc.identifier.issn.none.fl_str_mv |
03772217 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/8028 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.ejor.2020.08.021 |
dc.identifier.url.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S0377221720307293 |
identifier_str_mv |
03772217 |
url |
https://hdl.handle.net/20.500.12442/8028 https://doi.org/10.1016/j.ejor.2020.08.021 https://www.sciencedirect.com/science/article/pii/S0377221720307293 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.source.eng.fl_str_mv |
European Journal of Operational Research (EJOR) Vol. 290, Issue 2 (2021) |
institution |
Universidad Simón Bolívar |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/5b73d6ab-b43f-40bd-99ff-a8b9e213435a/download https://bonga.unisimon.edu.co/bitstreams/a25820a1-415a-4583-a7da-c616c4a7039f/download https://bonga.unisimon.edu.co/bitstreams/ecb79366-ce91-4b3c-9fc9-b192c6ac28d5/download https://bonga.unisimon.edu.co/bitstreams/8dcaf7d1-ece8-4c11-b90d-4760fd7a524b/download https://bonga.unisimon.edu.co/bitstreams/23bfefc8-bb97-416b-b565-bc1057dc24d0/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 733bec43a0bf5ade4d97db708e29b185 03f713b2bb2a212681a17fe5d717bc78 6ad5d291118db90a762ce77057c9d50b 03fc1f5c13f529b53b76aa4683487540 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076161895956480 |
spelling |
Villanueva-Cantillo, Jeymscc24ee3e-2338-481d-a97e-f01eba6c5173Munoz-Marquez, Manuelba8b0a04-9bc6-4c96-bc5d-df83de1be1022021-07-22T17:01:41Z2021-07-22T17:01:41Z202103772217https://hdl.handle.net/20.500.12442/8028https://doi.org/10.1016/j.ejor.2020.08.021https://www.sciencedirect.com/science/article/pii/S0377221720307293The selection of input and output variables is a key step in evaluating the relative efficiency of decision- making units (DMUs) in data envelopment analysis (DEA). In this paper, we present a methodology based on Monte Carlo simulations and bootstrapping for calculating the critical values of relevance measures in variable selection methods in DEA. Additionally, we define a set of metrics to study the methods’ performance when using such critical values. We conducted an extensive simulation study, applying the proposed methodology to two variable selection methods in 28 single-output model specifications (i.e., different number of inputs and DMUs in the DEA model) under multiple scenarios, varying factors related to the functional form of the production function, the probability of an input being relevant in the model, the probability distribution of the inputs, and the theoretical efficiencies of the DMUs. The simulation study shows that (i) our proposed methodology yields consistent results for the two methods studied, in terms of the generated critical values and the performance metrics, and (ii) for most model specifications, the critical values can be estimated with a linear model with a high adjusted R 2 , using factors related to the input probability distribution and the probability of an input being relevant as independent variables. Furthermore, we describe and compare the performance of the two methods studied, provide guidelines for using our methodology and the results presented in this paper, and propose suggestions for future research.pdfengElsevierAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2European Journal of Operational Research (EJOR)Vol. 290, Issue 2 (2021)Data envelopment analysisVariable selectionCritical valuesMonte Carlo simulationsMethodology for calculating critical values of relevance measures in variable selection methods in data envelopment analysisinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Adler, N., & Golany, B. (2001). Evaluation of deregulated airline networks using data envelopment analysis combined with principal component analysis with an ap- plication to western europe. European Journal of Operational Research, 132 (2), 18–31. https://doi.org/10.1016/S0377-2217(0 0)0 0150-8 .Adler, N., & Golany, B. (2002). Including principal component weights to improve discrimination in data envelopment analysis. Journal of the Operational Research Society, 53 (9), 985–991. https://doi.org/10.1057/palgrave.jors.2601400 .Adler, N., & Yazhemsky, E. (2010). Improving discrimination in data envelopment analysis: PCA-DEA or variable reduction. European Journal of Operational Re- search, 202 (1), 273–284. https://doi.org/10.1016/j.ejor.2009.03.050 .Amirteimoori, A., Despotis, D., & Kordrostami, S. (2012). Variable reduction in data envelopment analysis. Optimization, 63 (5), 735–745. https://doi.org/10. 1080/02331934.2012.684354Banker, R. D. (1996). Hypothesis tests using data envelopment analysis. The Journal of Productivity Analysis, 7 (2/3), 139–159. https://doi.org/10.10 07/BF0 0157038 .Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2 (6), 429–4 4 4. https:// doi.org/10.1016/0377-2217(78)90138-8 .Daraio, C. , & Simar, L. (2007). Advanced robust and nonparametric methods in effi- ciency analysis: methodology and applications (1st). Springer Science + Business Media .Dyson, R. G., Allen, R., Camanho, A. S., Podinovski, V. V., Sarrico, C. S., & Shale, E. A. (2001). Pitfalls and protocols in DEA. European Journal of Operational Research, 132 , 245–259. https://doi.org/10.1016/S0377-2217(0 0)0 0149-1 .Eskelinen, J. (2017). Comparison of variable selection techniques for data envelop- ment analysis in a retail bank. European Journal of Operational Research, 259 (2), 778–788. https://doi.org/10.1016/j.ejor.2016.11.009 .Fanchon, P. (2003). Variable selection for dynamic measures of efficiency in the computer industry. International Advances in Economic Research, 9 (3), 175–188. https://doi.org/10.1007/BF02295441 .Fernandez-Palacin, F., Lopez-Sanchez, M. A., & Munoz-Marquez, M. (2017). Step- wise selection of variables in DEA using contribution loads. Pesquisa Operacional, 38 (1), 31–52. https://doi.org/10.1590/0101-7438.2018.038.01.0031 .Holland, D., & Lee, S. (2002). Impacts of random noise and specification on es- timates of capacity derived from data envelopment analysis. European Journal of Operational Research, 137 (1), 10–21. https://doi.org/10.1016/S0377-2217(01) 0 0 087-X .Jenkins, L., & Anderson, M. (2003). A multivariate statistical approach to reducing the number of variables in data envelopment analysis. European Journal of Oper- ational Research, 147 (1), 51–61. https://doi.org/10.1016/S0377- 2217(02)00243- 6 .Jitthavech, J. (2016). Variable elimination in nested DEA models: a statistical ap- proach. International Journal of Operational Research, 27 (3), 389–410. https://doi. org/10.1504/IJOR.2016.078945 .Kao, L.-J., Lu, C.-J., & Chiu, C. C. (2011). Efficiency measurement using independent component analysis and data envelopment analysis. European Journal of Opera- tional Research, 210 (2), 310–317. https://doi.org/10.1016/j.ejor.2010.09.016 .Li, Y., & Liang, L. (2010). A shapley value index on the importance of variables in DEA models. Expert Systems with Applications, 37 (9), 6287–6292. https://doi.org/ 10.1016/j.eswa.2010.02.093 .Li, Y., Shi, X., Yang, M., & Liang, L. (2017). Variable selection in data envelopment analysis via akaike’s information criteria. Annals of Operations Research, 253 (1), 453–476. https://doi.org/10.1007/s10479- 016- 2382- 2 .Limleamthong, P., & Guillén-Gosálbez, G. (2018). Mixed-integer programming ap- proach for dimensionality reduction in data envelopment analysis: Application to the sustainability assessment of technologies and solvents. Industrial & Engi- neering Chemistry Research, 57 (30), 9866–9878. https://doi.org/10.1021/acs.iecr. 7b05284 .Lin, T.-Y., & Chiu, S. H. (2013). Using independent component analysis and network DEA to improve bank performance evaluation. Economic Modelling, 32 (1), 608–616. https://doi.org/10.1016/j.econmod.2013.03.003 .Liu, J. S., Lu, L. Y., & Lu, W. M. (2016). Research fronts in data envelopment analysis. Omega, 58 , 33–45. https://doi.org/10.1016/j.omega.2015.04.004 .Madhanagopal, R., & Chandrasekaran, R. (2014). Selecting appropriate variables for dea using genetic algorithm (ga) search procedure. International Journal of Data Envelopment Analysis and ∗Operations Research ∗, 1 (2), 28–33. https://doi.org/10. 12691/ijdeaor- 1- 2- 3 .Morita, H., & Avkiran, N. K. (2009). Selecting inputs and outputs in data envelop- ment analysis by designing statistical experiments. Journal of the Operations Re- search Society of Japan, 52 (2), 163–173. https://doi.org/10.15807/jorsj.52.163 .Nataraja, N. R., & Johnson, A. L. (2011). Guidelines for using variable selection tech- niques in data envelopment analysis. European Journal of Operational Research, 215 (3), 662–669. https://doi.org/10.1016/j.ejor.2011.06.045 .Pastor, J. T., Ruiz, J. L., & Sirvent, I. (2002). A statistical test for nested radial DEA models. Inmaculada Operations Research, 50 (4), 728–735. https://doi.org/10.1287/ opre.50.4.728.2866 .Perelman, S., & Santín, D. (2009). How to generate regularly behaved production data? a monte carlo experimentation on DEA scale efficiency measurement. Eu- ropean Journal of Operational Research, 199 (1), 303–310. https://doi.org/10.1016/j. ejor.2008.11.013 .R Core Team (2017). R: A language and environment for statistical computing, Vienna, Austria . https://www.R-project.org/Ruggiero, J. (2005). Impact assessment of input omission on DEA. International Jour- nal of Information Technology & Decision Making, 4 (3), 359–368. https://doi.org/ 10.1142/S02196220 050 0160X .Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: cri- tique and extensions. New Directions for Program Evaluation, 1986 (32), 73–105. https://doi.org/10.1002/ev.1441 .Sharma, M. J., & Yu, S. J. (2015). Stepwise regression data envelopment analysis for variable reduction. Applied Mathematics and Computation, 253 , 126–134. https: //doi.org/10.1016/j.amc.2014.12.050 .Simar, L., & Wilson, P. W. (2001). Testing restrictions in nonparametric efficiency models. Communications in Statistics –Simulation and Computation, 30 (1), 159–184. https://doi.org/10.1081/SAC-10 0 0 01865 .Sirvent, I., Ruiz, J. L., Borra ´s, F., & Pastor, J. T. (2005). A monte carlo evaluation of several tests for the selection of variables in DEA models. International Journal of Information Technology & Decision Making, 4 (3), 325–343. https://doi.org/10. 1142/S02196220 050 01581 .Toloo, M., & Babaee, S. (2015). On variable reductions in data envelopment analy- sis with an illustrative application to a gas company. Applied Mathematics and Computation, 270 , 527–533. https://doi.org/10.1016/j.amc.2015.06.122 .Toloo, M., Barat, M., & Masoumzadeh, A. (2015). Selective measures in data envel- opment analysis. Annals of Operations Research, 226 (1), 623–642. https://doi.org/ 10.1007/s10479- 014- 1714- 3 .Toloo, M., & Tichý, T. (2015). Two alternative approaches for selecting performance measures in data envelopment analysis. Measurement, 65 , 29–40. https://doi. org/10.1016/j.measurement.2014.12.043 .Ueda, T., & Hoshiai, Y. (1997). Application of principal component analysis for parsi- monious summarization of DEA inputs and/or outputs. Journal of the Operations Research Society of Japan, 40 (4), 466–478. https://doi.org/10.15807/jorsj.40.466 .Wagner, J. M., & Shimshak, D. G. (2007). Stepwise selection of variables in data en- velopment analysis: Procedures and managerial perspectives. European Journal of Operational Research, 180 (1), 57–67. https://doi.org/10.1016/j.ejor.2006.02.048 .CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/5b73d6ab-b43f-40bd-99ff-a8b9e213435a/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/a25820a1-415a-4583-a7da-c616c4a7039f/download733bec43a0bf5ade4d97db708e29b185MD53ORIGINALMethodology_calculating_critical_values_relevance_measures.pdfMethodology_calculating_critical_values_relevance_measures.pdfPDFapplication/pdf1062762https://bonga.unisimon.edu.co/bitstreams/ecb79366-ce91-4b3c-9fc9-b192c6ac28d5/download03f713b2bb2a212681a17fe5d717bc78MD54TEXTMethodology_calculating_critical_values_relevance_measures.pdf.txtMethodology_calculating_critical_values_relevance_measures.pdf.txtExtracted texttext/plain84229https://bonga.unisimon.edu.co/bitstreams/8dcaf7d1-ece8-4c11-b90d-4760fd7a524b/download6ad5d291118db90a762ce77057c9d50bMD55THUMBNAILMethodology_calculating_critical_values_relevance_measures.pdf.jpgMethodology_calculating_critical_values_relevance_measures.pdf.jpgGenerated Thumbnailimage/jpeg20068https://bonga.unisimon.edu.co/bitstreams/23bfefc8-bb97-416b-b565-bc1057dc24d0/download03fc1f5c13f529b53b76aa4683487540MD5620.500.12442/8028oai:bonga.unisimon.edu.co:20.500.12442/80282024-08-14 21:54:24.282http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |