Renal lithiasis detection in uro-computed tomography using a non-parametric technique
Renal lithiasis is the pathology that causes nephritic colic, which is one of the most frequent reasons for consultation in emergency medical services. According to the size, location, hardness and number of stones present in the urinary system, usually in the human kidney, it is established to whic...
- Autores:
-
Rodríguez-Ibáñez, R
Vera, M I
Vera, M
Gelvez-Almeida, E
Huérfano, Y
Valbuena, O
Salazar-Torres, J
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/5070
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/5070
- Palabra clave:
- Renal lithiasis
Urinary system
Computed tomography images
Kidney stones
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_cdc661700d76efa1ace805730c996b8b |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/5070 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Renal lithiasis detection in uro-computed tomography using a non-parametric technique |
title |
Renal lithiasis detection in uro-computed tomography using a non-parametric technique |
spellingShingle |
Renal lithiasis detection in uro-computed tomography using a non-parametric technique Renal lithiasis Urinary system Computed tomography images Kidney stones |
title_short |
Renal lithiasis detection in uro-computed tomography using a non-parametric technique |
title_full |
Renal lithiasis detection in uro-computed tomography using a non-parametric technique |
title_fullStr |
Renal lithiasis detection in uro-computed tomography using a non-parametric technique |
title_full_unstemmed |
Renal lithiasis detection in uro-computed tomography using a non-parametric technique |
title_sort |
Renal lithiasis detection in uro-computed tomography using a non-parametric technique |
dc.creator.fl_str_mv |
Rodríguez-Ibáñez, R Vera, M I Vera, M Gelvez-Almeida, E Huérfano, Y Valbuena, O Salazar-Torres, J |
dc.contributor.author.none.fl_str_mv |
Rodríguez-Ibáñez, R Vera, M I Vera, M Gelvez-Almeida, E Huérfano, Y Valbuena, O Salazar-Torres, J |
dc.subject.eng.fl_str_mv |
Renal lithiasis Urinary system Computed tomography images Kidney stones |
topic |
Renal lithiasis Urinary system Computed tomography images Kidney stones |
description |
Renal lithiasis is the pathology that causes nephritic colic, which is one of the most frequent reasons for consultation in emergency medical services. According to the size, location, hardness and number of stones present in the urinary system, usually in the human kidney, it is established to which form of treatment is suitable for the patient. These kidney stones can be analyzed by means of biopsy or imaging modalities such as computed tomography images. This type of images has challenging problems called noise, artifacts and low contrast. In this paper, in order to address these problems, a non-parametric semi-automatic computational technique is developed for detecting kidney stones, present in computed tomography images, using digital image processing techniques based on a smoothing filter and an edge detector. Finally, the size and position of the stones present in the images are calculated and a precision metric is considered to compare the manual segmentation, performed by an urologist, and the one generated by the NPCT, obtaining an excellent correlation. This technique can be useful in the renal lithiasis detection and if it is considering this kind of computational strategy, medical specialists can establish the clinic or surgical actions oriented to address this pathology. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T21:36:37Z |
dc.date.available.none.fl_str_mv |
2020-03-26T21:36:37Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.eng.fl_str_mv |
article |
dc.identifier.issn.none.fl_str_mv |
17426596 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/5070 |
identifier_str_mv |
17426596 |
url |
https://hdl.handle.net/20.500.12442/5070 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
dc.publisher.eng.fl_str_mv |
IOP Publishing |
dc.source.eng.fl_str_mv |
Journal of Physics: Conference Series Vol. 1414 (2019) |
institution |
Universidad Simón Bolívar |
dc.source.uri.eng.fl_str_mv |
https://iopscience.iop.org/article/10.1088/1742-6596/1414/1/012019 |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/6c8be018-e754-4d7b-acfd-05c83a5f9121/download https://bonga.unisimon.edu.co/bitstreams/12870a3d-50a1-4c5b-904d-fa9e6ecae86f/download https://bonga.unisimon.edu.co/bitstreams/3ff9b61b-252c-42c0-b9b3-2e9543dc8d31/download https://bonga.unisimon.edu.co/bitstreams/c7a75244-938e-4955-9eed-eff16205c578/download https://bonga.unisimon.edu.co/bitstreams/77071bb4-d3c6-4a0e-af80-b4385542da44/download https://bonga.unisimon.edu.co/bitstreams/7a92ae97-fb43-479c-bb67-7ddee28c9068/download https://bonga.unisimon.edu.co/bitstreams/94bdaa4b-2745-4c44-9171-ea4632dfabdf/download |
bitstream.checksum.fl_str_mv |
32847fd6452adb3281e2175d7d30dc29 4460e5956bc1d1639be9ae6146a50347 733bec43a0bf5ade4d97db708e29b185 736a596516059544b3acb97268d801b7 7bc04271b2d3ad89136eb52867c4e531 b5e622c4cb71b568a07778d11bf734c2 9ec8e83bc19296df75af15514eb9b84f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076160386007040 |
spelling |
Rodríguez-Ibáñez, Rf166c545-1967-4fa3-8726-dd9ea3d63c8bVera, M I4c675edd-c7b6-4fee-87e2-feb90cfc363eVera, M847eada8-99d3-4ff1-a613-ae3f62c30f9eGelvez-Almeida, E55062614-d175-4da1-834a-d7e54dcc92deHuérfano, Y001cc35e-75ac-48b8-9fd0-3c22464ff80fValbuena, O4286f2e0-ce46-49ce-a106-bd00c21a76e9Salazar-Torres, J40a2a6c9-3e39-4994-9b5a-1c6112bd80002020-03-26T21:36:37Z2020-03-26T21:36:37Z201917426596https://hdl.handle.net/20.500.12442/5070Renal lithiasis is the pathology that causes nephritic colic, which is one of the most frequent reasons for consultation in emergency medical services. According to the size, location, hardness and number of stones present in the urinary system, usually in the human kidney, it is established to which form of treatment is suitable for the patient. These kidney stones can be analyzed by means of biopsy or imaging modalities such as computed tomography images. This type of images has challenging problems called noise, artifacts and low contrast. In this paper, in order to address these problems, a non-parametric semi-automatic computational technique is developed for detecting kidney stones, present in computed tomography images, using digital image processing techniques based on a smoothing filter and an edge detector. Finally, the size and position of the stones present in the images are calculated and a precision metric is considered to compare the manual segmentation, performed by an urologist, and the one generated by the NPCT, obtaining an excellent correlation. This technique can be useful in the renal lithiasis detection and if it is considering this kind of computational strategy, medical specialists can establish the clinic or surgical actions oriented to address this pathology.pdfengIOP PublishingAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Journal of Physics: Conference SeriesVol. 1414 (2019)https://iopscience.iop.org/article/10.1088/1742-6596/1414/1/012019Renal lithiasisUrinary systemComputed tomography imagesKidney stonesRenal lithiasis detection in uro-computed tomography using a non-parametric techniquearticlearticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Raja A and Ranjani J 2013 Segment based detection and quantification of kidney stones and its symmetric analysis using texture properties based on logical operators with ultrasound scanning International Journal of Computer Applications 975 8887Primak A, McCollough C, Bruesewitz M, Zhang J and Fletcher J 2006 Relationship between noise, dose, and pitch in cardiac multi–detector row ct Radiographics 26 1785Wang G and Vannier M 1994 Stair–step artifacts in three-dimensional helical CT: An experimental study Radiology 191 79Liu J, Wang S and Turkbey E 2015 Computer-aided detection of renal calculi from noncontrast CT images using TV-flow and mser features Medical Physics 42 144Ebrahimi S and Mariano V 2015 Image quality improvement in kidney stone detection on computed tomography images Journal of Image and Graphics 3 40Sujata N, Siti F, Valliappan R and Sundresan P 2018 Automated kidney stone segmentation by seed pixel region growing approach: Initial implementation and results International Journal of Engineering and Technology 7 43Pratt W 2007 Digital image processing (New York: John Wiley & Sons Inc)Saénz F, Vera M, Huérfano Y, Molina V, Martinez L, Vera MI, Salazar W, Gelvez E, Salazar J, Valbuena O, Robles H, Bautista M and Arango J 2018 Brain hematoma computational segmentation Journal of Physics: Conference Series 1126 012071Burden R and Faires D 2010 Numerical analysis (Mexico: CENGAGE Learning)Huérfano Y, Vera M, Mar A and Bravo A 2019 Integrating a gradient–based difference operator with machine learning techniques in right heart segmentation Journal of Physics: Conference Series 1160 012003Dice L 1945 Measures of the amount of ecologic association between species Ecology 26 29Latarjet M and Ruiz A 2004 Anatomía humana (Barcelona: Médica Panamericana)ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf542969https://bonga.unisimon.edu.co/bitstreams/6c8be018-e754-4d7b-acfd-05c83a5f9121/download32847fd6452adb3281e2175d7d30dc29MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/12870a3d-50a1-4c5b-904d-fa9e6ecae86f/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/3ff9b61b-252c-42c0-b9b3-2e9543dc8d31/download733bec43a0bf5ade4d97db708e29b185MD53TEXTRenal_lithiasis_detection_UCT.pdf.txtRenal_lithiasis_detection_UCT.pdf.txtExtracted texttext/plain14829https://bonga.unisimon.edu.co/bitstreams/c7a75244-938e-4955-9eed-eff16205c578/download736a596516059544b3acb97268d801b7MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain15358https://bonga.unisimon.edu.co/bitstreams/77071bb4-d3c6-4a0e-af80-b4385542da44/download7bc04271b2d3ad89136eb52867c4e531MD56THUMBNAILRenal_lithiasis_detection_UCT.pdf.jpgRenal_lithiasis_detection_UCT.pdf.jpgGenerated Thumbnailimage/jpeg1298https://bonga.unisimon.edu.co/bitstreams/7a92ae97-fb43-479c-bb67-7ddee28c9068/downloadb5e622c4cb71b568a07778d11bf734c2MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg3343https://bonga.unisimon.edu.co/bitstreams/94bdaa4b-2745-4c44-9171-ea4632dfabdf/download9ec8e83bc19296df75af15514eb9b84fMD5720.500.12442/5070oai:bonga.unisimon.edu.co:20.500.12442/50702024-08-14 21:54:20.343http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |