A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting
Artificial Neural Networks (ANN) consists of some components, such as architecture and learning algorithm. These components have a significant effect on the performance of the ANN, but finding good parameters is a difficult task to achieve. An important requirement for this task is to ensure the red...
- Autores:
-
Sánchez-Sánchez, Paola A.
García-González, José Rafael
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/1735
- Acceso en línea:
- http://hdl.handle.net/20.500.12442/1735
- Palabra clave:
- Artificial Neural Networks (ANN)
Time Series Forecasting
Learning Algorithms
Error Reduction
- Rights
- License
- http://purl.org/coar/access_right/c_abf2
id |
USIMONBOL2_c92f149dae37405e429610a294b7ab92 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/1735 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting |
title |
A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting |
spellingShingle |
A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting Artificial Neural Networks (ANN) Time Series Forecasting Learning Algorithms Error Reduction |
title_short |
A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting |
title_full |
A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting |
title_fullStr |
A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting |
title_full_unstemmed |
A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting |
title_sort |
A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting |
dc.creator.fl_str_mv |
Sánchez-Sánchez, Paola A. García-González, José Rafael |
dc.contributor.author.none.fl_str_mv |
Sánchez-Sánchez, Paola A. García-González, José Rafael |
dc.subject.eng.fl_str_mv |
Artificial Neural Networks (ANN) Time Series Forecasting Learning Algorithms Error Reduction |
topic |
Artificial Neural Networks (ANN) Time Series Forecasting Learning Algorithms Error Reduction |
description |
Artificial Neural Networks (ANN) consists of some components, such as architecture and learning algorithm. These components have a significant effect on the performance of the ANN, but finding good parameters is a difficult task to achieve. An important requirement for this task is to ensure the reduction of error when inputs and/or hidden neurons are added. In practice, it is assumed that this requirement is always true, but usually it is false. In this paper, we propose a new algorithm that ensures error decrease when input variables and/or hidden neurons are added to the neural network. The behavior of two traditional algorithms and the proposed algorithm in the forecast of Airline time series were compared. The empirical results indicate that the proposed algorithm allows a steady decrease of fit error in all cases, where de most important and differentiable feature is the fact that reach values close to zero, which is not true for the other algorithms. Therefore, it can be used as a suitable alternative algorithm, especially when it needs a good fit. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017-06-30 |
dc.date.accessioned.none.fl_str_mv |
2018-03-01T14:41:35Z |
dc.date.available.none.fl_str_mv |
2018-03-01T14:41:35Z |
dc.type.spa.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
15493636 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12442/1735 |
identifier_str_mv |
15493636 |
url |
http://hdl.handle.net/20.500.12442/1735 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.publisher.spa.fl_str_mv |
Science publications |
dc.source.eng.fl_str_mv |
Journal of Computer Science |
dc.source.spa.fl_str_mv |
Vol. 13, No. 7 (2017) |
institution |
Universidad Simón Bolívar |
dc.source.uri.spa.fl_str_mv |
DOI: 10.3844/jcssp.2017.211.217 |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/c09a4881-cd7f-4c78-aae9-78fdcece6aec/download https://bonga.unisimon.edu.co/bitstreams/d47746c6-7138-4b63-b962-57a60a72148c/download https://bonga.unisimon.edu.co/bitstreams/b11290fc-30bb-44ff-9551-7314e08c476f/download https://bonga.unisimon.edu.co/bitstreams/310012b5-30f3-4d9e-8eef-af7d8369fb1d/download https://bonga.unisimon.edu.co/bitstreams/d99e979c-db23-4192-a825-538858007e8a/download https://bonga.unisimon.edu.co/bitstreams/2e881e78-9374-4626-9418-9dfeefcaf908/download |
bitstream.checksum.fl_str_mv |
7b1a9224c9b3c9b58e7bd7da74c8b199 8a4605be74aa9ea9d79846c1fba20a33 c5a63e0b24300430aa7feeebdc34e5f7 f03bff1eec5a4d5e7e725f2c0e747864 e69bdfa209015ab05deb377bb94259bf 2b241ed699227f27bf6013574268058a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076146576261120 |
spelling |
Sánchez-Sánchez, Paola A.9a854c12-7a61-4a3f-9d38-ac7dc13552ab-1García-González, José Rafael056a094b-5c1d-4b62-aa6c-9fc445ce7041-12018-03-01T14:41:35Z2018-03-01T14:41:35Z2017-06-3015493636http://hdl.handle.net/20.500.12442/1735Artificial Neural Networks (ANN) consists of some components, such as architecture and learning algorithm. These components have a significant effect on the performance of the ANN, but finding good parameters is a difficult task to achieve. An important requirement for this task is to ensure the reduction of error when inputs and/or hidden neurons are added. In practice, it is assumed that this requirement is always true, but usually it is false. In this paper, we propose a new algorithm that ensures error decrease when input variables and/or hidden neurons are added to the neural network. The behavior of two traditional algorithms and the proposed algorithm in the forecast of Airline time series were compared. The empirical results indicate that the proposed algorithm allows a steady decrease of fit error in all cases, where de most important and differentiable feature is the fact that reach values close to zero, which is not true for the other algorithms. Therefore, it can be used as a suitable alternative algorithm, especially when it needs a good fit.engScience publicationsJournal of Computer ScienceVol. 13, No. 7 (2017)DOI: 10.3844/jcssp.2017.211.217Artificial Neural Networks (ANN)Time Series ForecastingLearning AlgorithmsError ReductionA New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecastingarticlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/access_right/c_abf2Anastasiadis, A., G. Magoulas and M. Vrahatis, 2003. An efficient improvement of the Rprop algorithm. Proceedings of the 1st International Workshop on Artificial Neural Networks in Pattern Recognition, Sept. 12-13, At Florence, Italy, pp: 197-201.Crone, S. and N. Korentzes, 2009. Input-variable specification for neural networks-an analysis of forecasting low and high time series frequency. Proceedings of the International Joint Conference on Neural Networks, Jun. 14-19, IEEE Xplore Press, pp: 3221-3228. DOI: 10.1109/IJCNN.2009.5179046Faraway, J. and C. Chatfield, 1998. Time series forecasting with neural networks: A comparative study using the airline data. Applied Stat., 47: 231-250. DOI: 10.1111/1467-9876.00109Hornik, K., M. Stinchcombe and H. White, 1989. Multilayer feed forward networks are universal approximators. Neural Netw., 2: 359-366. DOI: 10.1016/0893-6080(89)90020-8Igel, C. and M. Husken, 2003. Empirical evaluation of the improved Rprop learning algorithms. Neurocomputing, 50: 105-123. DOI: 10.1016/S0925-2312(01)00700-7Murata, N., S. Yoshizawa and S. Amari, 1994. Network information criterion determining the number of hidden units for an artificial neural network model. IEEE Trans. Neural Netw., 5: 865-872. DOI: 10.1109/72.329683Nam, K. and T. Schaefer, 1995. Forecasting international airline passenger traffic using neural networks. Logist. Transport. Rev., 31: 239-251.Qi, M. and P. Zhang, 2001. An investigation of model selection criteria for neural network time series forecasting. Eur. J. Operat. Res., 132: 666-680. DOI: 10.1016/S0377-2217(00)00171-5Sánchez, P. and J.D. Velásquez, 2010. Problemas de investigación en la predicción de series de tiempo con redes neuronales artificiales. Rev. Avances Sistemas Inform., 7: 67-73.Zhang, G., B. Patuwo and M. Hu, 1998. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast., 14: 35-62. DOI: 10.1016/S0169-2070(97)00044-7ORIGINALPDF.pdfPDF.pdfFormato Pdf texto completoapplication/pdf560802https://bonga.unisimon.edu.co/bitstreams/c09a4881-cd7f-4c78-aae9-78fdcece6aec/download7b1a9224c9b3c9b58e7bd7da74c8b199MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bonga.unisimon.edu.co/bitstreams/d47746c6-7138-4b63-b962-57a60a72148c/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTA New Methodology for Neural Network (5).217.pdf.txtA New Methodology for Neural Network (5).217.pdf.txtExtracted texttext/plain24130https://bonga.unisimon.edu.co/bitstreams/b11290fc-30bb-44ff-9551-7314e08c476f/downloadc5a63e0b24300430aa7feeebdc34e5f7MD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain24900https://bonga.unisimon.edu.co/bitstreams/310012b5-30f3-4d9e-8eef-af7d8369fb1d/downloadf03bff1eec5a4d5e7e725f2c0e747864MD55THUMBNAILA New Methodology for Neural Network (5).217.pdf.jpgA New Methodology for Neural Network (5).217.pdf.jpgGenerated Thumbnailimage/jpeg1770https://bonga.unisimon.edu.co/bitstreams/d99e979c-db23-4192-a825-538858007e8a/downloade69bdfa209015ab05deb377bb94259bfMD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5959https://bonga.unisimon.edu.co/bitstreams/2e881e78-9374-4626-9418-9dfeefcaf908/download2b241ed699227f27bf6013574268058aMD5620.500.12442/1735oai:bonga.unisimon.edu.co:20.500.12442/17352024-07-26 03:10:12.266open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |