A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting

Artificial Neural Networks (ANN) consists of some components, such as architecture and learning algorithm. These components have a significant effect on the performance of the ANN, but finding good parameters is a difficult task to achieve. An important requirement for this task is to ensure the red...

Full description

Autores:
Sánchez-Sánchez, Paola A.
García-González, José Rafael
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/1735
Acceso en línea:
http://hdl.handle.net/20.500.12442/1735
Palabra clave:
Artificial Neural Networks (ANN)
Time Series Forecasting
Learning Algorithms
Error Reduction
Rights
License
http://purl.org/coar/access_right/c_abf2
id USIMONBOL2_c92f149dae37405e429610a294b7ab92
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/1735
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting
title A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting
spellingShingle A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting
Artificial Neural Networks (ANN)
Time Series Forecasting
Learning Algorithms
Error Reduction
title_short A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting
title_full A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting
title_fullStr A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting
title_full_unstemmed A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting
title_sort A New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecasting
dc.creator.fl_str_mv Sánchez-Sánchez, Paola A.
García-González, José Rafael
dc.contributor.author.none.fl_str_mv Sánchez-Sánchez, Paola A.
García-González, José Rafael
dc.subject.eng.fl_str_mv Artificial Neural Networks (ANN)
Time Series Forecasting
Learning Algorithms
Error Reduction
topic Artificial Neural Networks (ANN)
Time Series Forecasting
Learning Algorithms
Error Reduction
description Artificial Neural Networks (ANN) consists of some components, such as architecture and learning algorithm. These components have a significant effect on the performance of the ANN, but finding good parameters is a difficult task to achieve. An important requirement for this task is to ensure the reduction of error when inputs and/or hidden neurons are added. In practice, it is assumed that this requirement is always true, but usually it is false. In this paper, we propose a new algorithm that ensures error decrease when input variables and/or hidden neurons are added to the neural network. The behavior of two traditional algorithms and the proposed algorithm in the forecast of Airline time series were compared. The empirical results indicate that the proposed algorithm allows a steady decrease of fit error in all cases, where de most important and differentiable feature is the fact that reach values close to zero, which is not true for the other algorithms. Therefore, it can be used as a suitable alternative algorithm, especially when it needs a good fit.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-06-30
dc.date.accessioned.none.fl_str_mv 2018-03-01T14:41:35Z
dc.date.available.none.fl_str_mv 2018-03-01T14:41:35Z
dc.type.spa.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 15493636
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/1735
identifier_str_mv 15493636
url http://hdl.handle.net/20.500.12442/1735
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.publisher.spa.fl_str_mv Science publications
dc.source.eng.fl_str_mv Journal of Computer Science
dc.source.spa.fl_str_mv Vol. 13, No. 7 (2017)
institution Universidad Simón Bolívar
dc.source.uri.spa.fl_str_mv DOI: 10.3844/jcssp.2017.211.217
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/c09a4881-cd7f-4c78-aae9-78fdcece6aec/download
https://bonga.unisimon.edu.co/bitstreams/d47746c6-7138-4b63-b962-57a60a72148c/download
https://bonga.unisimon.edu.co/bitstreams/b11290fc-30bb-44ff-9551-7314e08c476f/download
https://bonga.unisimon.edu.co/bitstreams/310012b5-30f3-4d9e-8eef-af7d8369fb1d/download
https://bonga.unisimon.edu.co/bitstreams/d99e979c-db23-4192-a825-538858007e8a/download
https://bonga.unisimon.edu.co/bitstreams/2e881e78-9374-4626-9418-9dfeefcaf908/download
bitstream.checksum.fl_str_mv 7b1a9224c9b3c9b58e7bd7da74c8b199
8a4605be74aa9ea9d79846c1fba20a33
c5a63e0b24300430aa7feeebdc34e5f7
f03bff1eec5a4d5e7e725f2c0e747864
e69bdfa209015ab05deb377bb94259bf
2b241ed699227f27bf6013574268058a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076146576261120
spelling Sánchez-Sánchez, Paola A.9a854c12-7a61-4a3f-9d38-ac7dc13552ab-1García-González, José Rafael056a094b-5c1d-4b62-aa6c-9fc445ce7041-12018-03-01T14:41:35Z2018-03-01T14:41:35Z2017-06-3015493636http://hdl.handle.net/20.500.12442/1735Artificial Neural Networks (ANN) consists of some components, such as architecture and learning algorithm. These components have a significant effect on the performance of the ANN, but finding good parameters is a difficult task to achieve. An important requirement for this task is to ensure the reduction of error when inputs and/or hidden neurons are added. In practice, it is assumed that this requirement is always true, but usually it is false. In this paper, we propose a new algorithm that ensures error decrease when input variables and/or hidden neurons are added to the neural network. The behavior of two traditional algorithms and the proposed algorithm in the forecast of Airline time series were compared. The empirical results indicate that the proposed algorithm allows a steady decrease of fit error in all cases, where de most important and differentiable feature is the fact that reach values close to zero, which is not true for the other algorithms. Therefore, it can be used as a suitable alternative algorithm, especially when it needs a good fit.engScience publicationsJournal of Computer ScienceVol. 13, No. 7 (2017)DOI: 10.3844/jcssp.2017.211.217Artificial Neural Networks (ANN)Time Series ForecastingLearning AlgorithmsError ReductionA New Methodology for Neural Network Training Ensures Error Reduction in Time Series Forecastingarticlehttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/access_right/c_abf2Anastasiadis, A., G. Magoulas and M. Vrahatis, 2003. An efficient improvement of the Rprop algorithm. Proceedings of the 1st International Workshop on Artificial Neural Networks in Pattern Recognition, Sept. 12-13, At Florence, Italy, pp: 197-201.Crone, S. and N. Korentzes, 2009. Input-variable specification for neural networks-an analysis of forecasting low and high time series frequency. Proceedings of the International Joint Conference on Neural Networks, Jun. 14-19, IEEE Xplore Press, pp: 3221-3228. DOI: 10.1109/IJCNN.2009.5179046Faraway, J. and C. Chatfield, 1998. Time series forecasting with neural networks: A comparative study using the airline data. Applied Stat., 47: 231-250. DOI: 10.1111/1467-9876.00109Hornik, K., M. Stinchcombe and H. White, 1989. Multilayer feed forward networks are universal approximators. Neural Netw., 2: 359-366. DOI: 10.1016/0893-6080(89)90020-8Igel, C. and M. Husken, 2003. Empirical evaluation of the improved Rprop learning algorithms. Neurocomputing, 50: 105-123. DOI: 10.1016/S0925-2312(01)00700-7Murata, N., S. Yoshizawa and S. Amari, 1994. Network information criterion determining the number of hidden units for an artificial neural network model. IEEE Trans. Neural Netw., 5: 865-872. DOI: 10.1109/72.329683Nam, K. and T. Schaefer, 1995. Forecasting international airline passenger traffic using neural networks. Logist. Transport. Rev., 31: 239-251.Qi, M. and P. Zhang, 2001. An investigation of model selection criteria for neural network time series forecasting. Eur. J. Operat. Res., 132: 666-680. DOI: 10.1016/S0377-2217(00)00171-5Sánchez, P. and J.D. Velásquez, 2010. Problemas de investigación en la predicción de series de tiempo con redes neuronales artificiales. Rev. Avances Sistemas Inform., 7: 67-73.Zhang, G., B. Patuwo and M. Hu, 1998. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast., 14: 35-62. DOI: 10.1016/S0169-2070(97)00044-7ORIGINALPDF.pdfPDF.pdfFormato Pdf texto completoapplication/pdf560802https://bonga.unisimon.edu.co/bitstreams/c09a4881-cd7f-4c78-aae9-78fdcece6aec/download7b1a9224c9b3c9b58e7bd7da74c8b199MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bonga.unisimon.edu.co/bitstreams/d47746c6-7138-4b63-b962-57a60a72148c/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTA New Methodology for Neural Network (5).217.pdf.txtA New Methodology for Neural Network (5).217.pdf.txtExtracted texttext/plain24130https://bonga.unisimon.edu.co/bitstreams/b11290fc-30bb-44ff-9551-7314e08c476f/downloadc5a63e0b24300430aa7feeebdc34e5f7MD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain24900https://bonga.unisimon.edu.co/bitstreams/310012b5-30f3-4d9e-8eef-af7d8369fb1d/downloadf03bff1eec5a4d5e7e725f2c0e747864MD55THUMBNAILA New Methodology for Neural Network (5).217.pdf.jpgA New Methodology for Neural Network (5).217.pdf.jpgGenerated Thumbnailimage/jpeg1770https://bonga.unisimon.edu.co/bitstreams/d99e979c-db23-4192-a825-538858007e8a/downloade69bdfa209015ab05deb377bb94259bfMD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5959https://bonga.unisimon.edu.co/bitstreams/2e881e78-9374-4626-9418-9dfeefcaf908/download2b241ed699227f27bf6013574268058aMD5620.500.12442/1735oai:bonga.unisimon.edu.co:20.500.12442/17352024-07-26 03:10:12.266open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=