GeoGebra as learning tool for the search of the roots of functions in numerical methods
Physics is capable of describing, through equations, phenomena on a micro and macroscopic scale. However, most of these equations are non-linear and the identification of their roots requires the use of approximation methods, with numerical methods being a proposal based on a systematic and iterativ...
- Autores:
-
Arceo-Díaz, S
Briceo Barrios, E E
Aréchiga Maravillas, J
Salazar-Torres, J
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/9509
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/9509
https://iopscience.iop.org/article/10.1088/1742-6596/1672/1/012001
- Palabra clave:
- Physics
Mumerical methods
Algorithms
algorithm memorization
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_c8c285d98481f5d154994d93892d6892 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/9509 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
GeoGebra as learning tool for the search of the roots of functions in numerical methods |
title |
GeoGebra as learning tool for the search of the roots of functions in numerical methods |
spellingShingle |
GeoGebra as learning tool for the search of the roots of functions in numerical methods Physics Mumerical methods Algorithms algorithm memorization |
title_short |
GeoGebra as learning tool for the search of the roots of functions in numerical methods |
title_full |
GeoGebra as learning tool for the search of the roots of functions in numerical methods |
title_fullStr |
GeoGebra as learning tool for the search of the roots of functions in numerical methods |
title_full_unstemmed |
GeoGebra as learning tool for the search of the roots of functions in numerical methods |
title_sort |
GeoGebra as learning tool for the search of the roots of functions in numerical methods |
dc.creator.fl_str_mv |
Arceo-Díaz, S Briceo Barrios, E E Aréchiga Maravillas, J Salazar-Torres, J |
dc.contributor.author.none.fl_str_mv |
Arceo-Díaz, S Briceo Barrios, E E Aréchiga Maravillas, J Salazar-Torres, J |
dc.subject.spa.fl_str_mv |
Physics |
topic |
Physics Mumerical methods Algorithms algorithm memorization |
dc.subject.eng.fl_str_mv |
Mumerical methods Algorithms algorithm memorization |
description |
Physics is capable of describing, through equations, phenomena on a micro and macroscopic scale. However, most of these equations are non-linear and the identification of their roots requires the use of approximation methods, with numerical methods being a proposal based on a systematic and iterative process, that conclude only when a pre-established tolerance is satisfied. Traditional teaching of numerical methods involves the memorization of algorithms. However, this hinders student’s ability to understand the important aspects and then apply them for solving applied problems in subjects such as kinematics, dynamics, electromagnetism, etc. Therefore, this work proposes the use of GeoGebra, as a didactic tool to illustrate the functioning of single root searching algorithms. By using the dynamical graphic’s view of GeoGebra, a series of abstract and applied problems where solved by engineering students taking a numerical methods course. The scores of this test group was then compared to a test group, taught trough algorithm memorization. Results show can improve their understanding of how the bisection, false position, secant, and Newton-Raphson methods are able to find approximated solutions to polynomial and trigonometric equations. The results are compared against traditional learning, based on memorizing the steps of the algorithm for each method and the representation of the convergence of successive roots by numerical tables. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2022-04-04T18:34:01Z |
dc.date.available.none.fl_str_mv |
2022-04-04T18:34:01Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.spa.spa.fl_str_mv |
Artículo científico |
dc.identifier.issn.none.fl_str_mv |
17426596 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/9509 |
dc.identifier.url.none.fl_str_mv |
https://iopscience.iop.org/article/10.1088/1742-6596/1672/1/012001 |
identifier_str_mv |
17426596 |
url |
https://hdl.handle.net/20.500.12442/9509 https://iopscience.iop.org/article/10.1088/1742-6596/1672/1/012001 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.eng.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
pdf |
dc.publisher.eng.fl_str_mv |
IOP Publishing |
dc.source.eng.fl_str_mv |
Journal of Physics: Conference Series |
dc.source.none.fl_str_mv |
Vol. 1672 (2020) |
institution |
Universidad Simón Bolívar |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/b4cc162c-71ec-4f57-8d5a-1189d40de257/download https://bonga.unisimon.edu.co/bitstreams/ea3129b4-89fa-4962-8c32-dc9c527e8c31/download https://bonga.unisimon.edu.co/bitstreams/04ff59eb-b025-4ac5-bf0f-2ef2b28d01be/download https://bonga.unisimon.edu.co/bitstreams/79440e1b-ae28-4eb6-95c1-47b26b269c3e/download https://bonga.unisimon.edu.co/bitstreams/1452a70d-508a-4c76-af73-b62ecf2fc702/download https://bonga.unisimon.edu.co/bitstreams/cbd28786-d7a8-4e4d-ad02-b21e5d24f4bf/download https://bonga.unisimon.edu.co/bitstreams/2db37110-3336-4a07-8161-805b531ffdb7/download |
bitstream.checksum.fl_str_mv |
cced7389bc1c033709ffcc8c41abe85d 4460e5956bc1d1639be9ae6146a50347 733bec43a0bf5ade4d97db708e29b185 9e0cc21befc6a0f4733bb2d63905d621 9e0cc21befc6a0f4733bb2d63905d621 7b4eeb69906c83efc4a16a9c3cab7814 7b4eeb69906c83efc4a16a9c3cab7814 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076152061362176 |
spelling |
Arceo-Díaz, S1cbb7211-824e-42a3-9fa1-da13c8ad2840Briceo Barrios, E Ef964f626-b8e7-458d-ada5-fc4c9a8300a1Aréchiga Maravillas, Je7dd5825-e9e6-4f73-9a9a-6bedc6a96c3aSalazar-Torres, J40a2a6c9-3e39-4994-9b5a-1c6112bd80002022-04-04T18:34:01Z2022-04-04T18:34:01Z202017426596https://hdl.handle.net/20.500.12442/9509https://iopscience.iop.org/article/10.1088/1742-6596/1672/1/012001Physics is capable of describing, through equations, phenomena on a micro and macroscopic scale. However, most of these equations are non-linear and the identification of their roots requires the use of approximation methods, with numerical methods being a proposal based on a systematic and iterative process, that conclude only when a pre-established tolerance is satisfied. Traditional teaching of numerical methods involves the memorization of algorithms. However, this hinders student’s ability to understand the important aspects and then apply them for solving applied problems in subjects such as kinematics, dynamics, electromagnetism, etc. Therefore, this work proposes the use of GeoGebra, as a didactic tool to illustrate the functioning of single root searching algorithms. By using the dynamical graphic’s view of GeoGebra, a series of abstract and applied problems where solved by engineering students taking a numerical methods course. The scores of this test group was then compared to a test group, taught trough algorithm memorization. Results show can improve their understanding of how the bisection, false position, secant, and Newton-Raphson methods are able to find approximated solutions to polynomial and trigonometric equations. The results are compared against traditional learning, based on memorizing the steps of the algorithm for each method and the representation of the convergence of successive roots by numerical tables.pdfengIOP PublishingAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Physics: Conference SeriesVol. 1672 (2020)PhysicsMumerical methodsAlgorithmsalgorithm memorizationGeoGebra as learning tool for the search of the roots of functions in numerical methodsinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Chapra S, Canole R 2010 Numerical Methods for Engineers (New York: McGraw Hill Higher Education)Kiusalaas J 2013 Numerical Methods in Engineering with Python 3 (Cambridge: Cambridge University Press)Tom´as X, Cuadros J, Gonz´alez L 2006 Introducci´on al C´alculo Num´erico (Barcelona: Institut Qu´ımic de Sarri`a)Wylie C, Barrett L 1960 Advanced Engineering Mathematics (Pennsylvania: McGraw Hill Education)Mart´ın-Caraballo A, Tenorio A 2015 Teaching numerical methods for non-linear equations with Geogebrabased activities International Electronic Journal of Mathematics Education 10 67-73Gomez M, Cervantes J, B´aez E Garc´ıa A, Ramos R 2015 A software tool to improve teaching numerical methods Electronic Journal of Mathematics and Technology 9 31-35Lapidus L, Pinder G 2013 Numerical Solution of Partial Differential Equations in Science and Engineering (New Jersey: John Wiley and Sons)Rice J 2014 Numerical Methods in Software and Analysis (Amsterdam: Elsevier)Fern´andez S Orosa J, Galan J 2012 A new methodology to teach numerical methods with MS Excel Journal of Maritime Research 9 35-41Handayani A D, Herman T, Fatimah S 2017 Developing teaching material software assisted for numerical methods Journal of Physics: Conference Series 895 012019:1-7Wassie Y, Zergaw G 2018 Capabilities and contributions of the dynamic Math software, GeoGebra-A review North American GeoGebra Journal 7(1) 68-78Wassie Y, Zergaw G 2019 Some of the potential affordances, challenges and limitations of using GeoGebra in mathematics education Eurasia Journal of Mathematics, Science and Technology Education 15 1734-1746Hern´andez S, Fern´andez C, Baptista L 2014 Metodolog´ıa de la Investigaci´on (M´exico: McGraw Hill Education)Resnick R, Walker J, Halliday D 1988 Fundamentals of Physics (Hoboken: John Wiley)ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf874816https://bonga.unisimon.edu.co/bitstreams/b4cc162c-71ec-4f57-8d5a-1189d40de257/downloadcced7389bc1c033709ffcc8c41abe85dMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/ea3129b4-89fa-4962-8c32-dc9c527e8c31/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/04ff59eb-b025-4ac5-bf0f-2ef2b28d01be/download733bec43a0bf5ade4d97db708e29b185MD53TEXT2020_JofC_GeoGebra-as-learning-tool.pdf.txt2020_JofC_GeoGebra-as-learning-tool.pdf.txtExtracted texttext/plain26326https://bonga.unisimon.edu.co/bitstreams/79440e1b-ae28-4eb6-95c1-47b26b269c3e/download9e0cc21befc6a0f4733bb2d63905d621MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain26326https://bonga.unisimon.edu.co/bitstreams/1452a70d-508a-4c76-af73-b62ecf2fc702/download9e0cc21befc6a0f4733bb2d63905d621MD56THUMBNAIL2020_JofC_GeoGebra-as-learning-tool.pdf.jpg2020_JofC_GeoGebra-as-learning-tool.pdf.jpgGenerated Thumbnailimage/jpeg3667https://bonga.unisimon.edu.co/bitstreams/cbd28786-d7a8-4e4d-ad02-b21e5d24f4bf/download7b4eeb69906c83efc4a16a9c3cab7814MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg3667https://bonga.unisimon.edu.co/bitstreams/2db37110-3336-4a07-8161-805b531ffdb7/download7b4eeb69906c83efc4a16a9c3cab7814MD5720.500.12442/9509oai:bonga.unisimon.edu.co:20.500.12442/95092024-08-14 21:53:59.839http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |