Data Mining and Endocrine Diseases: A New Way to Classify?
Data mining consists of using large database analysis to detect patterns, relationships and models in order to describe (or even predict) the appearance of a future event; to accomplish this, it uses classification methods, rules of association, regression patterns, link and cluster analyses. Recent...
- Autores:
-
Salazar, Juan
Espinoza, Cristobal
Mindiola, Andres
Bermudez, Valmore
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/2303
- Acceso en línea:
- http://hdl.handle.net/20.500.12442/2303
- Palabra clave:
- Data mining
Classification
Endocrine disease
Diabetes mellitus
Information analysis
- Rights
- License
- Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id |
USIMONBOL2_c0ea193923f8ffaf6698c84ac6b93660 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/2303 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
spelling |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Salazar, Juanfbd053e7-5aea-424c-812f-92153ecb9181-1Espinoza, Cristobal9431d6c1-8553-4395-9301-476c5f3ebc9a-1Mindiola, Andres0205aea7-c0e9-4303-b053-6cc043914928-1Bermudez, Valmore6bcbb12f-5c0b-46ea-9a9a-e059644f7f4e-12018-10-03T19:39:20Z2018-10-03T19:39:20Z2018-0401884409http://hdl.handle.net/20.500.12442/2303Data mining consists of using large database analysis to detect patterns, relationships and models in order to describe (or even predict) the appearance of a future event; to accomplish this, it uses classification methods, rules of association, regression patterns, link and cluster analyses. Recently this approach has been used to propose a new diabetes mellitus classification, using information analysis techniques through which the selection bias minimally influences categorization, this new focus that includes data mining previously implemented to predict, identify biomarkers, complications, therapies, health policies, genetic and environmental effects of this disease; it could be generalized in the field of endocrinology, in the classification of other endocrine diseases.engElsevierArchives of Medical ResearchVol. 49, No. 3 (2018)https://doi.org/10.1016/j.arcmed.2018.08.005Data miningClassificationEndocrine diseaseDiabetes mellitusInformation analysisData Mining and Endocrine Diseases: A New Way to Classify?articlehttp://purl.org/coar/resource_type/c_6501R. Kumar, B.T. Shaikh, A.K. Chandio, et al. Role of Health Management Information System in disease reporting at a rural district of Sindh Pak J Public Health, 2 (2012), pp. 10-12I. ŢĂranu Data mining in healthcare: decision making and precision Database Systems Journal, VI (2015), pp. 33-40J. Semerdjian, S. Frank An Ensemble Classifier for Predicting the Onset of Type II Diabetes arXiv:1708.07480. Available: https://arxiv.org/pdf/1708.07480.pdf, Accessed 15th Jun 2018A. Agarwal, C. Baechle, R.S. Behara, V. Rao Multi-method approach to wellness predictive modeling J Big Data, 3 (2016), p. 15H.P. Himsworth The syndrome of diabetes mellitus and its causes Lancet, 1 (1949), pp. 465-473E. Ahlqvist, P. Storm, A. Käräjämäki, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables Lancet Diabetes Endocrinol, 6 (2018), pp. 361-369I. Kavakiotis, O. Tsave, A. Salifoglou, et al. Machine Learning and Data Mining Methods in Diabetes Research Comput Struct Biotechnol J, 15 (2017), pp. 104-116V. Bermúdez, J. Rojas, J. Salazar, et al. Sensitivity and Specificity Improvement in Abdominal Obesity Diagnosis Using Cluster Analysis during Waist Circumference Cut-Off Point SelectionM. Jajroudi, T. Baniasadi, L. Kamkar, F. Arbabi, M. Sanei, M. Ahmadzade Prediction of survival in thyroid cancer using data mining technique Technol Cancer Res Treat, 13 (2014), pp. 353-359D. Dewailly, M.Š. Alebić, A. Duhamel, N. Stojanović Using cluster analysis to identify a homogeneous subpopulation of women with polycystic ovarian morphology in a population of non-hyperandrogenic women with regular menstrual cycles Hum Reprod, 29 (2014), pp. 2536-2543LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/03b2241f-6a1d-416e-a402-8ec84ce486cb/download3fdc7b41651299350522650338f5754dMD5220.500.12442/2303oai:bonga.unisimon.edu.co:20.500.12442/23032019-04-11 21:51:38.392metadata.onlyhttps://bonga.unisimon.edu.coDSpace UniSimonbibliotecas@biteca.comPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4= |
dc.title.eng.fl_str_mv |
Data Mining and Endocrine Diseases: A New Way to Classify? |
title |
Data Mining and Endocrine Diseases: A New Way to Classify? |
spellingShingle |
Data Mining and Endocrine Diseases: A New Way to Classify? Data mining Classification Endocrine disease Diabetes mellitus Information analysis |
title_short |
Data Mining and Endocrine Diseases: A New Way to Classify? |
title_full |
Data Mining and Endocrine Diseases: A New Way to Classify? |
title_fullStr |
Data Mining and Endocrine Diseases: A New Way to Classify? |
title_full_unstemmed |
Data Mining and Endocrine Diseases: A New Way to Classify? |
title_sort |
Data Mining and Endocrine Diseases: A New Way to Classify? |
dc.creator.fl_str_mv |
Salazar, Juan Espinoza, Cristobal Mindiola, Andres Bermudez, Valmore |
dc.contributor.author.none.fl_str_mv |
Salazar, Juan Espinoza, Cristobal Mindiola, Andres Bermudez, Valmore |
dc.subject.eng.fl_str_mv |
Data mining Classification Endocrine disease Diabetes mellitus Information analysis |
topic |
Data mining Classification Endocrine disease Diabetes mellitus Information analysis |
description |
Data mining consists of using large database analysis to detect patterns, relationships and models in order to describe (or even predict) the appearance of a future event; to accomplish this, it uses classification methods, rules of association, regression patterns, link and cluster analyses. Recently this approach has been used to propose a new diabetes mellitus classification, using information analysis techniques through which the selection bias minimally influences categorization, this new focus that includes data mining previously implemented to predict, identify biomarkers, complications, therapies, health policies, genetic and environmental effects of this disease; it could be generalized in the field of endocrinology, in the classification of other endocrine diseases. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-10-03T19:39:20Z |
dc.date.available.none.fl_str_mv |
2018-10-03T19:39:20Z |
dc.date.issued.none.fl_str_mv |
2018-04 |
dc.type.eng.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
01884409 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12442/2303 |
identifier_str_mv |
01884409 |
url |
http://hdl.handle.net/20.500.12442/2303 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional |
rights_invalid_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.source.eng.fl_str_mv |
Archives of Medical Research |
dc.source.spa.fl_str_mv |
Vol. 49, No. 3 (2018) |
institution |
Universidad Simón Bolívar |
dc.source.uri.eng.fl_str_mv |
https://doi.org/10.1016/j.arcmed.2018.08.005 |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/03b2241f-6a1d-416e-a402-8ec84ce486cb/download |
bitstream.checksum.fl_str_mv |
3fdc7b41651299350522650338f5754d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 |
repository.name.fl_str_mv |
DSpace UniSimon |
repository.mail.fl_str_mv |
bibliotecas@biteca.com |
_version_ |
1814076138468671488 |