Performance analysis of a commercial fixed bed downdraft gasifier using palm kernel shells

This work analyzes the use of palm kernel shells (PKS) produced by the Colombian palm oil mill industry, for purposes of fueling a commercial downdraft fixed bed gasifier (Ankur Scientific WGB- 20) designed to operate with wood chips. Operational parameters such as hopper shaking time, ash removal t...

Full description

Autores:
Verdeza-Villalobos, Arnaldo
Lenis-Rodas, Yuhan-Arley
Bula-Silvera, Antonio-José
Mendoza-Fandiño, Jorge-Mario
Gómez-Vásquez, Rafael-David
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/4402
Acceso en línea:
https://hdl.handle.net/20.500.12442/4402
Palabra clave:
Fixed bed downdraft gasification
Kernel shells
African palm
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_bff5062c416ca06711992a843d8ed5a3
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/4402
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Performance analysis of a commercial fixed bed downdraft gasifier using palm kernel shells
title Performance analysis of a commercial fixed bed downdraft gasifier using palm kernel shells
spellingShingle Performance analysis of a commercial fixed bed downdraft gasifier using palm kernel shells
Fixed bed downdraft gasification
Kernel shells
African palm
title_short Performance analysis of a commercial fixed bed downdraft gasifier using palm kernel shells
title_full Performance analysis of a commercial fixed bed downdraft gasifier using palm kernel shells
title_fullStr Performance analysis of a commercial fixed bed downdraft gasifier using palm kernel shells
title_full_unstemmed Performance analysis of a commercial fixed bed downdraft gasifier using palm kernel shells
title_sort Performance analysis of a commercial fixed bed downdraft gasifier using palm kernel shells
dc.creator.fl_str_mv Verdeza-Villalobos, Arnaldo
Lenis-Rodas, Yuhan-Arley
Bula-Silvera, Antonio-José
Mendoza-Fandiño, Jorge-Mario
Gómez-Vásquez, Rafael-David
dc.contributor.author.none.fl_str_mv Verdeza-Villalobos, Arnaldo
Lenis-Rodas, Yuhan-Arley
Bula-Silvera, Antonio-José
Mendoza-Fandiño, Jorge-Mario
Gómez-Vásquez, Rafael-David
dc.subject.eng.fl_str_mv Fixed bed downdraft gasification
Kernel shells
African palm
topic Fixed bed downdraft gasification
Kernel shells
African palm
description This work analyzes the use of palm kernel shells (PKS) produced by the Colombian palm oil mill industry, for purposes of fueling a commercial downdraft fixed bed gasifier (Ankur Scientific WGB- 20) designed to operate with wood chips. Operational parameters such as hopper shaking time, ash removal time, and airflow were varied in order to get the highest gasifier performance, computed as the ratio between producer gas chemical energy over biomass feeding energy. Experiments were carried out following a half fraction experimental design 24-1. Since these parameters affect the equivalence ratio (ER), behavior indicators were analyzed as a function of ER. It was found that the shaking time and airflow had a significant effect on higher-heating-value (HHV) and process efficiency, while the removal time is not significant. Highest performance for palm shell was reached at ER=0.35, where the resulting gas HHV and process efficiency were 5.04 MJ/Nm3 and 58%, respectively.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-12-04T13:51:57Z
dc.date.available.none.fl_str_mv 2019-12-04T13:51:57Z
dc.date.issued.none.fl_str_mv 2019
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 01225383
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/4402
identifier_str_mv 01225383
url https://hdl.handle.net/20.500.12442/4402
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.publisher.spa.fl_str_mv Ecopetrol
dc.source.spa.fl_str_mv CT&F - Ciencia, Tecnología y Futuro
Vol. 9, N° 2 (2019) December
institution Universidad Simón Bolívar
dc.source.uri.spa.fl_str_mv https://doi.org/10.29047/01225383.181
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/2e8c1991-c756-4e6d-8b09-bf8d9d3101a2/download
https://bonga.unisimon.edu.co/bitstreams/7f219c40-9517-4986-9a76-03a162b26cdc/download
https://bonga.unisimon.edu.co/bitstreams/d7e86b40-0fc1-413c-931f-1b623910f68d/download
https://bonga.unisimon.edu.co/bitstreams/b7973c97-1045-4413-a1aa-7837955c7e44/download
https://bonga.unisimon.edu.co/bitstreams/a04d8fd3-d79b-4916-b058-b3929b3d506e/download
https://bonga.unisimon.edu.co/bitstreams/c0524c67-f88e-4f55-acab-6d88c0a502cc/download
https://bonga.unisimon.edu.co/bitstreams/706b2db8-b84a-4db5-8bdc-a302d1189330/download
bitstream.checksum.fl_str_mv e28428d46b4848d274e51d34005962e9
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
04931bcdd5faaca0fe6e4a937c9e2e11
b77c9dd53650ea7154eafe0c03de20a3
ecf2ddb23b982c5bfbfc9aeeff803a82
2c82617ea3d917d52140a1986ca6d7e0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076095621758976
spelling Verdeza-Villalobos, Arnaldoe600d037-5aed-4ae9-ad3a-d68c480e8bb7Lenis-Rodas, Yuhan-Arleyac22b6a7-1f96-4037-933c-b46ad1acdfecBula-Silvera, Antonio-José8fe62bf5-15c8-4a04-a468-00e30f7a0144Mendoza-Fandiño, Jorge-Mario7d0327bf-ed35-4176-bc22-92939ea95a70Gómez-Vásquez, Rafael-David9002f935-1d7a-4a4c-9492-6d32d3152d752019-12-04T13:51:57Z2019-12-04T13:51:57Z201901225383https://hdl.handle.net/20.500.12442/4402This work analyzes the use of palm kernel shells (PKS) produced by the Colombian palm oil mill industry, for purposes of fueling a commercial downdraft fixed bed gasifier (Ankur Scientific WGB- 20) designed to operate with wood chips. Operational parameters such as hopper shaking time, ash removal time, and airflow were varied in order to get the highest gasifier performance, computed as the ratio between producer gas chemical energy over biomass feeding energy. Experiments were carried out following a half fraction experimental design 24-1. Since these parameters affect the equivalence ratio (ER), behavior indicators were analyzed as a function of ER. It was found that the shaking time and airflow had a significant effect on higher-heating-value (HHV) and process efficiency, while the removal time is not significant. Highest performance for palm shell was reached at ER=0.35, where the resulting gas HHV and process efficiency were 5.04 MJ/Nm3 and 58%, respectively.engEcopetrolAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2CT&F - Ciencia, Tecnología y FuturoVol. 9, N° 2 (2019) Decemberhttps://doi.org/10.29047/01225383.181Fixed bed downdraft gasificationKernel shellsAfrican palmPerformance analysis of a commercial fixed bed downdraft gasifier using palm kernel shellsarticlehttp://purl.org/coar/resource_type/c_6501Girón, E. A., Valderrama, M. V., Ruíz, J. D., Anuario Estadístico 2017 Principales cifras de la agroindustria de la palma de aceite en Colombia 2012-2016, Fedepalma, Colombia, Tech. Rep. ISSN 2344-8490, Oct. 2017.Arrieta, F. R., Teixeira, F. N., Yanez, E., Lora, E. and Castillo, E., Cogeneration potential in the Colombian palm oil industry: Three case studies, Biomass and Bioenergy, 2007, 31 (7), 503–511. https://doi.org/10.1016/j. biombioe.2007.01.016Salomón, M., Gomez, M. F. and Martin, A., Technical polygeneration potential in palm oil mills in Colombia: A case study, Sustainable Energy Technologies and Assessments, 2013, 3, 40–52. https://doi.org/10.1016/j. seta.2013.05.003Hambali, E. and Rivai, M., The potential of palm oil waste biomass in Indonesia in 2020 and 2030, International Conference on Biomass: Technology, Application, and Sustainable Development, IOP Conf. Series: Earth and Environmental Science, Makassar, Indonesia, Oct. 25–26, 2017. https://doi.org/10.1088/1755- 1315/65/1/012050Heidenreich, S. and Foscolo, P. U., New concepts in biomass gasification, Progress in Energy and Combustion Science, 2015, 46, 72-95. https://doi.org/10.1016/j. pecs.2014.06.002Perez, J. F., Lenis, Y., Rojas, S. and Leon, C., Decentralized power generation through biomass gasification: a technical - economic analysis and implications by reduction of CO2 emissions, Revista Facultad de Ingeniería Universidad de Antioquia, 2012, 62, 157–169.Lee, U., Balu, E. and Chung, J. N., An experimental evaluation of an integrated biomass gasification and power generation system for distributed power applications, Applied Energy, 2013, 101, 699–708. https:// doi.org/10.1016/j.apenergy.2012.07.036Asadullah, M., Barriers of commercial power generation using biomass gasification gas: A review, Renewable and Sustainable Energy Reviews, 2014, 29, 201–215. https://doi.org/10.1016/j.rser.2013.08.074Samiran, N. A., Jaafar, M. N., Ng, J. H., Lam, S. S. and Chong, C. T., Progress in biomass gasification technique - With focus on Malaysian palm biomass for syngas production, Renewable and Sustainable Energy Reviews, 2016, 62, 1047–1062. https://doi.org/10.1016/j. rser.2016.04.049Guo, F., Dong, Y., Dong, L. and Guo, C., Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: An experimental study, International Journal of Hydrogen Energy, 2014, 39 (11), 5625-5633. https://doi.org/10.1016/j. ijhydene.2014.01.130Molino, A., Chianese, S. and Musmarra, D., Biomass gasification technology: The state of the art overview, Journal of Energy Chemistry, 2016, 25 (1), 10–25. https:// doi.org/10.1016/j.jechem.2015.11.005Lenis, Y. A. and Pérez J. F., Gasification of sawdust and wood chips in a fixed bed under autothermal and stable conditions, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2014, 36 (23), 2555–2565. https://doi.org/10.1080/15567036.2013. 875081Ouadi, M., Brammer, J. G., Kay, M. and Hornung A., Fixed bed downdraft gasification of paper industry wastes, Applied Energy, 2013, 103, 692–699. https://doi. org/10.1016/j.apenergy.2012.10.038Jeya, V. C. and Sekhar, S. J., Performance studies on a downdraft biomass gasifier with blends of coconut shell and rubber seed shell as feedstock, Applied Thermal Engineering, 2016, 97, 22–27. https://doi.org/10.1016/j. applthermaleng.2015.09.099Sreejith, C. C., Muraleedharan, C. and Arun, P., Energy and exergy analysis of steam gasification of biomass materials: a comparative study, International Journal of Ambient Energy, 2013, 34 (1), 35–52. https://doi.org/10. 1080/01430750.2012.711085Mohammad, N. A., Chong, C., Valera-Medina, A. and Ng, J.-H., Downdraft gasification of raw and torrefied palm kernel shell, 3rd International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), IEEE Xplore, Johor Bahru, Malaysia, April 4-6, 2017. https://doi.org/10.1109/PGSRET.2017.8251798Pérez, J. F., Melgar, A. and Benjumea, P. N., Effect of operating and design parameters on the gasification/ combustion process of waste biomass in fixed bed downdraft reactors: An experimental study, Fuel, 2017, 96, 487–496. https://doi.org/10.1016/j.fuel.2012.01.064Nickerson, T. A., Hathaway, B. J., Smith, T. M. and Davidson, J. H., Economic assessment of solar and conventional biomass gasification technologies : Financial and policy implications under feedstock and product gas price uncertainty, Biomass and Bioenergy, 2015, 74, 47–57. https://doi.org/10.1016/j. biombioe.2015.01.002Lenis, Y. A., Pérez, J.F. and Melgar, A., Fixed bed gasification of Jacaranda Copaia wood: Effect of packing factor and oxygen enriched air, Industrial Crops and Products, 2016, 84, 166–175. https://doi.org/10.1016/j. indcrop.2016.01.053Jangsawang, W., Laohalidanond, K. and Kerdsuwan, S., Optimum equivalence ratio of biomass gasification process based on thermodynamic equilibrium model, Energy Procedia, 2015, 79, 520-527. https://doi. org/10.1016/j.egypro.2015.11.528Porteiro, J., Patiño, D., Collazo, J., Granada, E., Moran, J. and Miguez, J. L., Experimental analysis of the ignition front propagation of several biomass fuels in a fixed-bed combustor, Fuel, 2010, 89 (1), 26–35. https:// doi.org/10.1016/j.fuel.2009.01.024Sharma, S. and Sheth, P. N., Air – steam biomass gasification : Experiments, modeling and simulation, Energy Conversion and Management, 2016, 110, 307-318. https://doi.org/10.1016/j.enconman.2015.12.030Basu, P., “Biomass Characteristics,” in, Biomass Gasification, Pyrolysis and Torrefaction, Academic Press, Canada: Greenfield Research, Dalhousie University, 2018, pp. 49-91. https://doi.org/10.1016/B978-0-12-812992- 0.00003-0Ninduangdee P. and Kuprianov, V. I., Study on burning oil palm kernel shell in a conical fluidized-bed combustor using alumina as the bed material, Journal of the Taiwan Institute of Chemical Engineers, 2013, 44 (6), 1045-1053. https://doi.org/10.1016/j.jtice.2013.06.011Montgomery, D. C., Design and Analysis of Experiments, 9 th ed. Arizona: Wiley, 2017.Bridgwater, A. V., The technical and economic feasibility of biomass gasification for power generation, Fuel, 1995, 74 (5), 631–653. https://doi.org/10.1016/0016- 2361(95)00001-LMartínez, J. D., Mahkamov, K., Andrade, R. V. and Silva, E. E., Syngas production in downdraft biomass gasifiers and its application using internal combustion engines, Renewable Energy, 2012, 38 (1), 1–9. https:// doi.org/10.1016/j.renene.2011.07.035ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf1863377https://bonga.unisimon.edu.co/bitstreams/2e8c1991-c756-4e6d-8b09-bf8d9d3101a2/downloade28428d46b4848d274e51d34005962e9MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/7f219c40-9517-4986-9a76-03a162b26cdc/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/d7e86b40-0fc1-413c-931f-1b623910f68d/download733bec43a0bf5ade4d97db708e29b185MD53TEXTPerformance_analysis_of_Commercial.pdf.txtPerformance_analysis_of_Commercial.pdf.txtExtracted texttext/plain37019https://bonga.unisimon.edu.co/bitstreams/b7973c97-1045-4413-a1aa-7837955c7e44/download04931bcdd5faaca0fe6e4a937c9e2e11MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain37764https://bonga.unisimon.edu.co/bitstreams/a04d8fd3-d79b-4916-b058-b3929b3d506e/downloadb77c9dd53650ea7154eafe0c03de20a3MD56THUMBNAILPerformance_analysis_of_Commercial.pdf.jpgPerformance_analysis_of_Commercial.pdf.jpgGenerated Thumbnailimage/jpeg1735https://bonga.unisimon.edu.co/bitstreams/c0524c67-f88e-4f55-acab-6d88c0a502cc/downloadecf2ddb23b982c5bfbfc9aeeff803a82MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5521https://bonga.unisimon.edu.co/bitstreams/706b2db8-b84a-4db5-8bdc-a302d1189330/download2c82617ea3d917d52140a1986ca6d7e0MD5720.500.12442/4402oai:bonga.unisimon.edu.co:20.500.12442/44022024-08-14 21:51:59.369http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u