Potential energy savings and CO2 emissions reduction in Colombia compressed air systems

Compressed air (CA) is one of the most common systems used in industry. In countries such as Australia, Italia, France, China and USA, energy consumption of CA systems (CASs) contributes about to 10% of the total electricity consumption in industry. In Colombia, this value reaches 8%, highlighting t...

Full description

Autores:
Castellanos, Luis Marcos
Hernandez-Herrera, Hernan
Silva-Ortega, Jorge I.
Martínez Diaz, Vicente Leonel
García Sanchez, Zaid
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/4076
Acceso en línea:
https://hdl.handle.net/20.500.12442/4076
Palabra clave:
Compressed Air Systems
Electricity Consumption
Energy Efficiency
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_b95f916ac7dc6187a883544270b02813
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/4076
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Potential energy savings and CO2 emissions reduction in Colombia compressed air systems
title Potential energy savings and CO2 emissions reduction in Colombia compressed air systems
spellingShingle Potential energy savings and CO2 emissions reduction in Colombia compressed air systems
Compressed Air Systems
Electricity Consumption
Energy Efficiency
title_short Potential energy savings and CO2 emissions reduction in Colombia compressed air systems
title_full Potential energy savings and CO2 emissions reduction in Colombia compressed air systems
title_fullStr Potential energy savings and CO2 emissions reduction in Colombia compressed air systems
title_full_unstemmed Potential energy savings and CO2 emissions reduction in Colombia compressed air systems
title_sort Potential energy savings and CO2 emissions reduction in Colombia compressed air systems
dc.creator.fl_str_mv Castellanos, Luis Marcos
Hernandez-Herrera, Hernan
Silva-Ortega, Jorge I.
Martínez Diaz, Vicente Leonel
García Sanchez, Zaid
dc.contributor.author.none.fl_str_mv Castellanos, Luis Marcos
Hernandez-Herrera, Hernan
Silva-Ortega, Jorge I.
Martínez Diaz, Vicente Leonel
García Sanchez, Zaid
dc.subject.eng.fl_str_mv Compressed Air Systems
Electricity Consumption
Energy Efficiency
topic Compressed Air Systems
Electricity Consumption
Energy Efficiency
description Compressed air (CA) is one of the most common systems used in industry. In countries such as Australia, Italia, France, China and USA, energy consumption of CA systems (CASs) contributes about to 10% of the total electricity consumption in industry. In Colombia, this value reaches 8%, highlighting the textile industry, with a 24% of consumption. Despite of all its advantages, CA is expensive, between 10 and 30% of consumed energy reaches the end-use point. Improvements to CASs can achieve between 20 and 60% of energy savings, with pay-back periods lower than two years. These are the reasons that they can be considered as one of the main targetsystems while planning energy efficiency actions in industry. Colombia through different strategies has proposed to implement a group of measures to improve energy efficiency and reduce electricity consumption to 2021 around 7%. Implementation of good practices in CASs is one of them. This paper is showed the share cost, electricity consumption and the savings potential of the CASs in the different divisions of the Colombian manufacturing sector, the main sectors to be involved as well as the potential savings and reduction of dioxide carbon emissions.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-10-04T19:26:07Z
dc.date.available.none.fl_str_mv 2019-10-04T19:26:07Z
dc.date.issued.none.fl_str_mv 2019
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 21464553
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/4076
identifier_str_mv 21464553
url https://hdl.handle.net/20.500.12442/4076
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv EconJournals
dc.source.eng.fl_str_mv International Journal of Energy Economics and Policy
dc.source.spa.fl_str_mv Vol. 9, No. 6 (2019)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv http://www.econjournals.com/index.php/ijeep/article/view/8084/4634
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/6fbaef17-3109-41fc-9d88-28997971a10a/download
https://bonga.unisimon.edu.co/bitstreams/67b55c55-9299-4f0c-b21d-2b8ca81d556e/download
https://bonga.unisimon.edu.co/bitstreams/c73d1fa6-51aa-4083-a259-34e13b36dc85/download
https://bonga.unisimon.edu.co/bitstreams/47839549-9aa2-42db-b4cd-d2e422c1506a/download
https://bonga.unisimon.edu.co/bitstreams/0e66d1db-6acb-4ed5-928b-1c87279ae10c/download
https://bonga.unisimon.edu.co/bitstreams/c589caf2-1ba9-4ceb-a348-8d9573d55000/download
https://bonga.unisimon.edu.co/bitstreams/579d0b47-7f2e-43ad-80c7-c43f2438b308/download
bitstream.checksum.fl_str_mv 1e61d3a399042ba367bbf9966af72cf6
4460e5956bc1d1639be9ae6146a50347
3fdc7b41651299350522650338f5754d
383a51da6492c6641693912d7e4a0b53
7234d748dbfe8cca4f5e8c0f698da1cd
3de9758f1b6de6dbef74f3c87e1bead1
359691eca3f7e0d528f893053359f02a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076093671407616
spelling Castellanos, Luis Marcosb91b3eaf-86ca-41e9-8504-db8bcee4334aHernandez-Herrera, Hernan8d876a58-14a4-40f8-bdcc-1da64fa24ebdSilva-Ortega, Jorge I.e24290e4-3e33-49ca-aa01-6e0996f7c5b6Martínez Diaz, Vicente Leonel8fd6f0c9-de23-4549-8592-1b936ddeebd1García Sanchez, Zaidee28c4c1-55b7-4a3d-accd-f1ed634d67882019-10-04T19:26:07Z2019-10-04T19:26:07Z201921464553https://hdl.handle.net/20.500.12442/4076Compressed air (CA) is one of the most common systems used in industry. In countries such as Australia, Italia, France, China and USA, energy consumption of CA systems (CASs) contributes about to 10% of the total electricity consumption in industry. In Colombia, this value reaches 8%, highlighting the textile industry, with a 24% of consumption. Despite of all its advantages, CA is expensive, between 10 and 30% of consumed energy reaches the end-use point. Improvements to CASs can achieve between 20 and 60% of energy savings, with pay-back periods lower than two years. These are the reasons that they can be considered as one of the main targetsystems while planning energy efficiency actions in industry. Colombia through different strategies has proposed to implement a group of measures to improve energy efficiency and reduce electricity consumption to 2021 around 7%. Implementation of good practices in CASs is one of them. This paper is showed the share cost, electricity consumption and the savings potential of the CASs in the different divisions of the Colombian manufacturing sector, the main sectors to be involved as well as the potential savings and reduction of dioxide carbon emissions.engEconJournalsAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2International Journal of Energy Economics and PolicyVol. 9, No. 6 (2019)http://www.econjournals.com/index.php/ijeep/article/view/8084/4634Compressed Air SystemsElectricity ConsumptionEnergy EfficiencyPotential energy savings and CO2 emissions reduction in Colombia compressed air systemsarticlehttp://purl.org/coar/resource_type/c_6501Abdelaziz, E.A., Saidur, R., Mekhilef, S. (2011), A review on energy saving strategies in industrial sector. Renewable and Sustainable Energy Reviews, 15, 150-168.Annegret, C., Radgen, P. (2003), Efficient Compressed Air a Successful Campaign for Energy Efficient Compressed Air Systems in Germany, ECEEE 2003 Summer study Proceedings; 2-7, Saint-Raphaël, France: ECEEE.Benedetti, M., Bertini, I., Bonfà, F., Ferrari, S., Introna, V., Santino, D., Ubertini, S. (2017), Assessing and improving compressed air systems’ energy efficiency in production and use: Findings from an explorative study in large and energy-intensive industrial firms. Energy Procedia, 105, 3112-3117.Benedetti, M., Bonfà, F., Bertini, I., Introna, V., Ubertini, S. (2017a), Explorative study on compressed air systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms. Applied Energy, 227, 436-448.Bonfà, F., Salvatori, S., Benedetti, M., Introna, V., Ubertini, S. (2017), Monitoring compressed air systems energy performance in industrial production: lesson learned from an explorative study in large and energy-intensive industrial firms. Energy Procedia, 143, 396-403.BP Energy Economics. (2018), BP Energy Outlook. Available from: https://www.bp.com/content/dam/bp/en/corporate/pdf/ energyeconomics/energy-outlook/bp-energy-outlook-2018.pdf. [Last accessed on 2019 Jan 28].Chikunov, S.O., Gutsunuk, O.N., Ivleva, M.I., Elyakova, I.D., Nikolaeva, I.V., Maramygin, M.S. (2018), Improving the economic performance of Russia’s energy system based on the development of alternative energy sources. International Journal of Energy Economics and Policy, 8(6), 382-391.Corsini, A., De Propris, L., Feudo, S., Stefanato, M. (2015), Assessment of a diagnostic procedure for the monitoring and control of industrial processes. Energy Procedia, 75, 1772-1778.Desfiandi, A., Singagerda, F.S., Sanusi, A. (2019), Building an energy consumption model and sustainable economic growth in emerging countries. International Journal of Energy Economics and Policy, 9(2), 51-66.Dindorf, R. (2012), Estimating potential energy savings in compressed air systems”. Procedia Engineering, 39, 204-211.DoE, U.S. (1998), Improving Compressed Air System Performance, a Sourcebook for Industry. Prepared for the US Department of Energy, Motor Challenge Program by Lawrence Berkeley National Laboratory (LBNL) and Resource Dynamics Corporation (RDC). Vienna, VA: RDC.European Commission. (2009), Reference Document on Best Available Techniques for Energy Efficiency. Available from: http://www. eippcb.jrc.ec.europa.eu. [Last accessed on 2019 Feb 22].Faizah, S.I., Husaeni, U.A. (2018), Development of consumption and supplying energy in Indonesia’s economy. International Journal of Energy Economics and Policy, 8(6), 313-321.Fleiter, T., Hirzel, S., Worrell, E. (2012), The characteristics of energyefficiency measures a neglected dimension. Energy Policy, 51, 502-513.IEA. (2017), International Energy Outlook. Available from: https:// www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf. [Last accessed on 2019 Mar 14].IEA. (2018), Energy Efficiency, Analysis and outlooks to 2040. Available from: https://www.webstore.iea.org/market-report-series-energyefficiency- 2018-chinese-abridged. [Last accessed on 2019 Jan 29].Kaya, D., Phelan, P., Chau, D., Ibrahim, H. (2002), Energy conservation in compressed-air systems. International Journal of Energy Research, 26(9), 837-849.Mousavi, S., Kara, S., Kornfeld, B. (2014), Energy Efficiency of Compressed Air Systems, 21st CIRP Conference on Life Cycle Engineering. Vol. 15. Sydney: Procedia CIRP. p313-318.Nehler, T. (2018a), Linking energy efficiency measures in industrial compressed air systems with non-energy benefits a review.” Renewable and Sustainable Energy Reviews, 89, 72-87.Nehler, T., Parra, R., Thollander, P. (2018a), Implementation of energy efficiency measures in compressed air systems: Barriers, drivers and non-energy benefits. Energy Efficiency, 11(5), 1281-1302.Ocampo, N., Garcia, J., Ghazoul, J., Etter, A. (2018), Quantifying impacts of oil palm expansion on Colombia’s threatened biodiversity. Biological Conservation, 224, 117-121.Radgen, P. (2005), Greenhous gas emissions reduction by motor systems the case of compressed air systems in power generation and industry. Greenhouse Gas Control Technologies, 7, 1421-1426.Radgen, P., Blaustein, E. (2001), Compressed air Systems in the European Union: Energy, Emissions, Savings Potential and Policy Actions. Stuttgart, Germany: LOG_X Verlag GmbH.Saidur, R., Rahim, N.A., Hasanuzzaman, M. (2010), A review on compressed-air energy use and energy saving. Renewable and Sustainable Energy Reviews, 14, 1135-1153.Šešlija, D., Ignjatović, I., Dudić, S., Lagod, B. (2011), Potential energy savings in compressed air systems in Serbia. African Journal of Business Management, 5(14), 5637-5645.Slobodan, D., Ignjatovic, I., Šešlija, D., Blagojevic, V., Miodrag, S. (2012), Leakage quantification of compressed air using ultrasound and infrared thermography. Measurement, 45, 1689-1694.Trianni, A., Cagno, E., Farné, S. (2016), Barriers, drivers and decisionmaking process for industrial energy efficiency: A broad study among manufacturing small and medium-sized enterprises. Applied Energy, 162, 1537-1551.United Nations. (2018), International Standard Industrial Classification off all Economics Activities (ISIC) Revision 4, ISBN: 978-92-1- 161518-0, United Nations, New York: ISIC.Vittorini, D., Roberto, C. (2016), Energy saving potential in existing industrial compressors. Energy, 102, 502-515.Yang, M. (2009), Air compressor efficiency in a Vietnamese enterprise. Energy Policy, 37(6), 2327-2337.Yépez, A., Hallack, M., Ji, Yi., López, D. (2018), The Energy Path of Latin America and Caribbean. Caribbean: IDB Monograph. p683.Zahlan, J., Asfour, S. (2015), A multi-objective approach for determining optimal air compressor location in a manufacturing facility. Journal of Manufacturing Systems, 35, 176-190.Área Metropolitana del Valle de Aburra (AMVA). (2016). Protocolo como mecanismo de implementación del plan operacional para enfrentar episodios críticos de contaminación atmosférica- POECA. Available from: http://ieu.unal.edu.co/images/Acuerdo_N15POECA.pdf. [Last accessed on 2019 Feb 12].Área Metropolitana del Valle de Aburra (AMVA). (2018). Protocolo como mecanismo de implementación del plan operacional para enfrentar episodios críticos de contaminación atmosférica- POECA. Available from: http://ieu.unal.edu.co/images/Acuerdo_N15POECA.pdf. [Last accessed on 2019 Mar 4].Berruezo, J.A., Jiménez, J.D. (2017), Situación del Convenio Marco de Naciones Unidas sobre el Cambio Climático. Resumen de las Cumbres de París, COP21 y de Marrakech, COP22. Revista de Salud Ambiental, 17(1), 34-39.DANE, (2018), Clasificación Industrial Internacional Uniforme de Todas Las Actividades Económicas, Revisión 4 adaptada para Colombia CIIU Rev. 4 A.C. Colombia: DANE.Echeverri, J., Hincapié, J.A. (2012), Evolución de la concentración y especialización industrial en Colombia, 1975-2005. Ensayos de Economía, 22(40), 81-102.Jaramillo, A.C. (2019), Estimación Fracción Inhalada de Contaminantes Primarios del aire en la Ciudad de Medellín (Master’s Thesis, Escuela de Ingenierías), Medellin, Colombia.Lotero, J., Posada, H.M., Valderrama, D. (2009), La competitividad de los departamentos colombianos desde la perspectiva de la geografía económica. Lecturas de Economía, (71), 107-139.Roa, S., Castellanos, A. (2018), Propuesta de un Sistema Solar Fotovoltaico en el Centro Experimental de la Universidad Distrital “El Tíbar”. Bogotá. Colombia: Trabajo de Grado. Universidad Distrital Francisco José de Caldas.UPME CORPOEMA. (2014a), Determinación y Priorización de Alternativas de Eficiencia Energética Para los Subsectores Manufactureros Informe Final Códigos CIIU 19 a 31. Vol. 1. Colombia: UPME CORPOEMA. Available from: http://www. upme.gov.co/Estudios/2014/Informe_Final_Volumen_1.pdf. [Last accessed on 2019 Mar 08].UPME CORPOEMA. (2014b), Determinación y Priorización de Alternativas de Eficiencia Energética para los Subsectores Manufactureros Informe Final Códigos CIIU 19 a 31. Vol. 2. Colombia: UPME CORPOEMA. Available from: http://www1. upme.gov.co/DemandaEnergetica/DeterminacionEficiencia/ Informe_Final_Volumen_2.pdf. [Last accessed on 2019 Mar 08]UPME INCOMBUSTION. (2013). Determinación del Potencial de Reducción del Consumo Energético en los Subsectores Manufactureros Códigos CIIU 10 a 18 en Colombia. Available from: http://www1. upme.gov.co/DemandaEnergetica/INFORME_III_Caracterizacion_ energetica_VerPub.pdf. [Last accessed on 2019 Mar 06].UPME. (2016), Plan de Acción Indicativo de Eficiencia Energética 2017-2022, una Realidad y Oportunidad Para Colombia (PAI Proure 2017-2022). Available from: http://www1. upme.gov.co/DemandaEnergetica/MarcoNormatividad/PAI_ PROURE_2017-2022.pdf. [Last accessed on 2018 Jan 29].UPME. (2018), Balance Energético Colombiano. BECO. Available from: http://www1.upme.gov.co/InformacionCifras/Paginas/ BalanceEnergetico.aspx. [Last accessed on 2019 Feb 14].ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf1407577https://bonga.unisimon.edu.co/bitstreams/6fbaef17-3109-41fc-9d88-28997971a10a/download1e61d3a399042ba367bbf9966af72cf6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/67b55c55-9299-4f0c-b21d-2b8ca81d556e/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/c73d1fa6-51aa-4083-a259-34e13b36dc85/download3fdc7b41651299350522650338f5754dMD53TEXTPotential_Energy_Savings.pdf.txtPotential_Energy_Savings.pdf.txtExtracted texttext/plain31296https://bonga.unisimon.edu.co/bitstreams/47839549-9aa2-42db-b4cd-d2e422c1506a/download383a51da6492c6641693912d7e4a0b53MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain31619https://bonga.unisimon.edu.co/bitstreams/0e66d1db-6acb-4ed5-928b-1c87279ae10c/download7234d748dbfe8cca4f5e8c0f698da1cdMD56THUMBNAILPotential_Energy_Savings.pdf.jpgPotential_Energy_Savings.pdf.jpgGenerated Thumbnailimage/jpeg1843https://bonga.unisimon.edu.co/bitstreams/c589caf2-1ba9-4ceb-a348-8d9573d55000/download3de9758f1b6de6dbef74f3c87e1bead1MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg6105https://bonga.unisimon.edu.co/bitstreams/579d0b47-7f2e-43ad-80c7-c43f2438b308/download359691eca3f7e0d528f893053359f02aMD5720.500.12442/4076oai:bonga.unisimon.edu.co:20.500.12442/40762024-08-14 21:51:55.576http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=