DNA repair and metabolic gene polymorphisms affect genetic damage due to diesel engine exhaust exposure

Diesel engine exhaust (DEE) is a complex mixture of toxic gases, halogenated aromatic hydrocarbons, alkyl polycyclic aromatic hydrocarbons, polycyclic aromatic hydrocarbons, benzene derivatives, metals and diesel exhaust particles (DEPs) generated from the incomplete combustion of diesel fuel. Many...

Full description

Autores:
León-Mejía, Grethel
Quintana-Sosa, Milton
de Moya Hernandez, Yurina
Luna Rodríguez, Ibeth
Trindade, Cristiano
Anaya Romero, Marco
Luna-Carrasca, Jaime
Oliveros Ortíz, Ludis
Acosta-Hoyos, Antonio
Ruiz-Benitez, Martha
Franco Valencia, Karen
Rohr, Paula
da Silva, Juliana
Pêgas Henriques, João Antônio
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/5090
Acceso en línea:
https://hdl.handle.net/20.500.12442/5090
Palabra clave:
Diesel exhaust particles
Polymorphism
DNA repair
DNA oxidative damage
Mechanics
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_b6613418d498958e2baf44e46d97eb34
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/5090
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv DNA repair and metabolic gene polymorphisms affect genetic damage due to diesel engine exhaust exposure
title DNA repair and metabolic gene polymorphisms affect genetic damage due to diesel engine exhaust exposure
spellingShingle DNA repair and metabolic gene polymorphisms affect genetic damage due to diesel engine exhaust exposure
Diesel exhaust particles
Polymorphism
DNA repair
DNA oxidative damage
Mechanics
title_short DNA repair and metabolic gene polymorphisms affect genetic damage due to diesel engine exhaust exposure
title_full DNA repair and metabolic gene polymorphisms affect genetic damage due to diesel engine exhaust exposure
title_fullStr DNA repair and metabolic gene polymorphisms affect genetic damage due to diesel engine exhaust exposure
title_full_unstemmed DNA repair and metabolic gene polymorphisms affect genetic damage due to diesel engine exhaust exposure
title_sort DNA repair and metabolic gene polymorphisms affect genetic damage due to diesel engine exhaust exposure
dc.creator.fl_str_mv León-Mejía, Grethel
Quintana-Sosa, Milton
de Moya Hernandez, Yurina
Luna Rodríguez, Ibeth
Trindade, Cristiano
Anaya Romero, Marco
Luna-Carrasca, Jaime
Oliveros Ortíz, Ludis
Acosta-Hoyos, Antonio
Ruiz-Benitez, Martha
Franco Valencia, Karen
Rohr, Paula
da Silva, Juliana
Pêgas Henriques, João Antônio
dc.contributor.author.none.fl_str_mv León-Mejía, Grethel
Quintana-Sosa, Milton
de Moya Hernandez, Yurina
Luna Rodríguez, Ibeth
Trindade, Cristiano
Anaya Romero, Marco
Luna-Carrasca, Jaime
Oliveros Ortíz, Ludis
Acosta-Hoyos, Antonio
Ruiz-Benitez, Martha
Franco Valencia, Karen
Rohr, Paula
da Silva, Juliana
Pêgas Henriques, João Antônio
dc.subject.spa.fl_str_mv Diesel exhaust particles
Polymorphism
DNA repair
DNA oxidative damage
Mechanics
topic Diesel exhaust particles
Polymorphism
DNA repair
DNA oxidative damage
Mechanics
description Diesel engine exhaust (DEE) is a complex mixture of toxic gases, halogenated aromatic hydrocarbons, alkyl polycyclic aromatic hydrocarbons, polycyclic aromatic hydrocarbons, benzene derivatives, metals and diesel exhaust particles (DEPs) generated from the incomplete combustion of diesel fuel. Many of the compounds in this mixture can cause oxidative damage to DNA and are considered carcinogenic for humans. Further, chronic DEE exposure increases risks of cardiovascular and pulmonary diseases. Despite these pervasive health risks, there is limited and inconsistent information regarding genetic factors conferring susceptibility or resistance to DEE genotoxicity. The present study evaluated the effects of polymorphisms in two base excision repair (BER) genes (OGG1 Ser326Cys and XRCC1 Arg280His), one homologous recombination (HRR) gene (XRCC3 Thr241Met) and two xenobiotic metabolism genes (GSTM1 and GSTT1) on the genotoxicity profiles among 123 mechanics exposed to workplace DEE. Polymorphisms were determined by PCR-RFLP. In comet assay, individuals with the GSTT1 null genotype demonstrated significantly greater % tail DNA in lymphocytes than those with non-null genotype. In contrast, these null individuals exhibited significantly lower frequencies of binucleated (BN) cells and nuclear buds (NBUDs) in buccal cells than non-null individuals. Heterozygous hOGG1 326 individuals (hOGG1 326 Ser/Cys) exhibited higher buccal cell NBUD frequency than hOGG1 326 Ser/Ser individuals. Individuals carrying the XRCC3 241 Met/Met polymorphism also showed significantly higher buccal cell NBUD frequencies than those carrying the XRCC3 241 Thr/Thr polymorphism. We found a high flow of particulate matter with a diameter of < 2.5 μm (PM2.5) in the workplace. The most abundant metals in DEPs were iron, copper, silicon and manganese as detected by transmission electron microscopy–energy-dispersive X-ray spectroscopy (TEM-EDX). Scanning electron microscopy (SEM-EDS) revealed particles with diameters smaller than PM2.5, including nanoparticles forming aggregates and agglomerates. Our results demonstrate the genotoxic effects of DEE and the critical influence of genetic susceptibility conferred by DNA repair and metabolic gene polymorphisms that shed light into the understanding of underlying mechanisms.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-04-06T20:58:15Z
dc.date.available.none.fl_str_mv 2020-04-06T20:58:15Z
dc.date.issued.none.fl_str_mv 2020-03
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.eng.fl_str_mv article
dc.identifier.issn.spa.fl_str_mv 09441344
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/5090
dc.identifier.doi.none.fl_str_mv DOI 10.1007/s11356-020-08533-6
identifier_str_mv 09441344
DOI 10.1007/s11356-020-08533-6
url https://hdl.handle.net/20.500.12442/5090
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_14cb
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.spa.fl_str_mv Springer
dc.source.eng.fl_str_mv Environmental Science and Pollution Research
dc.source.spa.fl_str_mv (2020)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/562ba8e9-b700-4140-83e6-a6d13979503a/download
https://bonga.unisimon.edu.co/bitstreams/1cb06d3b-2927-47a6-8099-e23ac19af3c6/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100473042239488
spelling León-Mejía, Grethel2127a2cb-5db7-4c12-b489-73b81cabcfb6Quintana-Sosa, Milton5f0842a5-e2f6-4013-86b3-59968f926cd7de Moya Hernandez, Yurinab547556e-4e22-4e27-a624-c5013d6ba30dLuna Rodríguez, Ibethc4f323c6-a3b6-44a9-85cb-a86277e2cda1Trindade, Cristiano30b50065-9290-4b8a-837b-01634d3219d7Anaya Romero, Marco72ab4f56-9557-4332-a2ea-6cc583d7892eLuna-Carrasca, Jaime98420ea2-7e7e-4ad6-ad72-4fdc5ac94366Oliveros Ortíz, Ludis7ca8d170-2564-4a99-81eb-cf8ff5fdf8f1Acosta-Hoyos, Antonio09a6d3fe-f531-42c9-adfe-e782d15f43f6Ruiz-Benitez, Marthaea24c6dd-016a-4d22-bdad-da99c185af5eFranco Valencia, Karen7021fe06-c441-4149-a9a0-32af342e4c83Rohr, Paulad032999c-1e30-4cb8-842c-a7faa444d768da Silva, Juliana9f32768b-932a-4f04-a9bd-41306619a841Pêgas Henriques, João Antôniod67945cb-4680-4b77-ac12-b80facdb6c662020-04-06T20:58:15Z2020-04-06T20:58:15Z2020-0309441344https://hdl.handle.net/20.500.12442/5090DOI 10.1007/s11356-020-08533-6Diesel engine exhaust (DEE) is a complex mixture of toxic gases, halogenated aromatic hydrocarbons, alkyl polycyclic aromatic hydrocarbons, polycyclic aromatic hydrocarbons, benzene derivatives, metals and diesel exhaust particles (DEPs) generated from the incomplete combustion of diesel fuel. Many of the compounds in this mixture can cause oxidative damage to DNA and are considered carcinogenic for humans. Further, chronic DEE exposure increases risks of cardiovascular and pulmonary diseases. Despite these pervasive health risks, there is limited and inconsistent information regarding genetic factors conferring susceptibility or resistance to DEE genotoxicity. The present study evaluated the effects of polymorphisms in two base excision repair (BER) genes (OGG1 Ser326Cys and XRCC1 Arg280His), one homologous recombination (HRR) gene (XRCC3 Thr241Met) and two xenobiotic metabolism genes (GSTM1 and GSTT1) on the genotoxicity profiles among 123 mechanics exposed to workplace DEE. Polymorphisms were determined by PCR-RFLP. In comet assay, individuals with the GSTT1 null genotype demonstrated significantly greater % tail DNA in lymphocytes than those with non-null genotype. In contrast, these null individuals exhibited significantly lower frequencies of binucleated (BN) cells and nuclear buds (NBUDs) in buccal cells than non-null individuals. Heterozygous hOGG1 326 individuals (hOGG1 326 Ser/Cys) exhibited higher buccal cell NBUD frequency than hOGG1 326 Ser/Ser individuals. Individuals carrying the XRCC3 241 Met/Met polymorphism also showed significantly higher buccal cell NBUD frequencies than those carrying the XRCC3 241 Thr/Thr polymorphism. We found a high flow of particulate matter with a diameter of < 2.5 μm (PM2.5) in the workplace. The most abundant metals in DEPs were iron, copper, silicon and manganese as detected by transmission electron microscopy–energy-dispersive X-ray spectroscopy (TEM-EDX). Scanning electron microscopy (SEM-EDS) revealed particles with diameters smaller than PM2.5, including nanoparticles forming aggregates and agglomerates. Our results demonstrate the genotoxic effects of DEE and the critical influence of genetic susceptibility conferred by DNA repair and metabolic gene polymorphisms that shed light into the understanding of underlying mechanisms.pdfSpringerAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_14cbEnvironmental Science and Pollution Research(2020)Diesel exhaust particlesPolymorphismDNA repairDNA oxidative damageMechanicsDNA repair and metabolic gene polymorphisms affect genetic damage due to diesel engine exhaust exposurearticlearticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Aka P, Mateuca R, Buchet J-P, Thierens H, Kirsch-Volders M (2004) Are genetic polymorphisms in OGG1, XRCC1 and XRCC3 genes predictive for the DNA strand break repair phenotype and genotoxicity in workers exposed to low dose ionising radiations? Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 556:169–181. https://doi.org/10.1016/j.mrfmmm. 2004.08.002Alarifi S, Ali D, Alkahtani S (2017) Oxidative stress-induced DNA damage by manganese dioxide nanoparticles in human neuronal cells. Biomed Res Int 2017:1–10. https://doi.org/10.1155/2017/5478790Andreassi MG, Foffa I, Manfredi S, Botto N, Cioppa A, Picano E (2009) Genetic polymorphisms in XRCC1, OGG1, APE1 and XRCC3 DNA repair genes, ionizing radiation exposure and chromosomal DNA damage in interventional cardiologists. Mutation Research/ Fundamental and Molecular Mechanisms of Mutagenesis 666:57– 63. https://doi.org/10.1016/j.mrfmmm.2009.04.003Araujo JA, Nel AE (2009) Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Particle Fibre Toxicol 6:24. https://doi.org/10.1186/1743-8977-6-24Brandt EB, Biagini Myers JM, Acciani TH, Ryan PH, Sivaprasad U, Ruff B, LeMasters GK, Bernstein DI, Lockey JE, LeCras TD, Khurana Hershey GK (2015) Exposure to allergen and diesel exhaust particles potentiates secondary allergen-specific memory responses, promoting asthma susceptibility. Journal of allergy and clinical immunology 136:295-303.e7. https://doi.org/10.1016/j.jaci.2014.11.043Bruinink A, Wang J, Wick P (2015) Effect of particle agglomeration in nanotoxicology. Arch Toxicol 89:659–675. https://doi.org/10.1007/ s00204-015-1460-6Chakraborty S, Castranova V, Perez MK, Piedimonte G (2017) Nanoparticles-induced apoptosis of human airway epithelium is mediated by proNGF/p75 NTR signaling. J Toxic Environ Health A 80: 53–68. https://doi.org/10.1080/15287394.2016.1238329Chan JYW, Tsui JCC, Law PTW, So WKW, Leung DYP, Sham MMK, Tsui SKW, Chan CWH (2018) Regulation of TLR4 in silica-induced inflammation: an underlying mechanism of silicosis. Int J Med Sci 15:986–991. https://doi.org/10.7150/ijms.24715Christiani DC, Mehta AJ, Yu C-L (2008) Genetic susceptibility to occupational exposures. Occup Environ Med 65:430–436. https://doi. org/10.1136/oem.2007.033977De Ruyck K, Van Eijkeren M, Claes K, Morthier R, De Paepe A, Vral A, De Ridder L, Thierens H (2005) Radiation-induced damage to normal tissues after radiotherapy in patients treated for gynecologic tumors: association with single nucleotide polymorphisms in XRCC1, XRCC3, and OGG1 genes and in vitro chromosomal radiosensitivity in lymphocytes. International journal of radiation oncology*biology*physics 62:1140–1149. https://doi.org/10.1016/ j.ijrobp.2004.12.027Djansugurova L, Zhunussova G, Khussainova E, Iksan O, Afonin G, Kaidarova D, Parker MI (2015) Association of DCC, MLH1, GSTT1, GSTM1, and TP53 gene polymorphisms with colorectal cancer in Kazakhstan. Tumor Biol 36:279–289. https://doi.org/10. 1007/s13277-014-2641-2Donaldson K (2001) Ultrafine particles. Occup Environ Med 58:211– 216. https://doi.org/10.1136/oem.58.3.211Douki T, Corbière C, Preterre D, Martin PJ, Lecureur V, André V, Landkocz Y, Pottier I, Keravec V, Fardel O, Moreira-Rebelo S, Pottier D, Vendeville C, Dionnet F, Gosset P, Billet S, Monteil C, Sichel F (2018) Comparative study of diesel and biodiesel exhausts on lung oxidative stress and genotoxicity in rats. Environ Pollut 235: 514–524. https://doi.org/10.1016/j.envpol.2017.12.077Duan H, Jia X, Zhai Q, Ma L, Wang S, Huang C, Wang H, Niu Y, Li X, Dai Y, Yu S, Gao W, Chen W, Zheng Y (2016) Long-term exposure to diesel engine exhaust induces primary DNA damage: a population-based study. Occup Environ Med 73:83–90. https://doi. org/10.1136/oemed-2015-102919EPA, United States Environmental Protection Agency (2016) Health and Environmental Effects of Particulate Matter (PM). https://www.epa. gov/pm-pollution/health-and-environmental-effects-particulatematter-pmFenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104. https://doi.org/10.1038/nprot.2007.77Fenech M, Kirsch-Volders M, Natarajan AT, Surralles J, Crott JW, Parry J, Norppa H, Eastmond DA, Tucker JD, Thomas P (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26:125– 132. https://doi.org/10.1093/mutage/geq052Fireman E, Edelheit R, Stark M, Shai AB (2017) Differential pattern of deposition of nanoparticles in the airways of exposed workers. J Nanoparticle Res 19:–9. https://doi.org/10.1007/s11051-016-3711- 8Fleming AM, Ding Y, Burrows CJ (2017) Oxidative DNA damage is epigenetic by regulating gene transcription via base excision repair. Proc Natl Acad Sci 114:2604–2609. https://doi.org/10.1073/pnas. 1619809114Han S, Zhang H-T, Wang Z, Xie Y, Tang R, Mao Y, Li Y (2006) DNA repair gene XRCC3 polymorphisms and cancer risk: a meta-analysis of 48 case–control studies. Eur J Hum Genet 14:1136–1144. https:// doi.org/10.1038/sj.ejhg.5201681Hart JE, Eisen EA, Laden F (2012) Occupational diesel exhaust exposure as a risk factor for chronic obstructive pulmonary disease: Current Opinion in Pulmonary Medicine. 18:151–154. https://doi.org/10. 1097/MCP.0b013e32834f0eaaIARC: International Agency for Research on Cancer (2012) DIESEL ENGINE EXHAUST CARCINOGENIC. Press Release N° 213. https://www.iarc.fr/wp-content/uploads/2018/07/pr213_E.pdfIarmarcovai G, Sari-Minodier I, Orsière T, De Méo M, Gallice P, Bideau C, Iniesta D, Pompili J, Bergé-Lefranc JL, Botta A (2006) A combined analysis of XRCC1, XRCC3, GSTM1 and GSTT1 polymorphisms and centromere content of micronuclei in welders. Mutagenesis 21:159–165. https://doi.org/10.1093/mutage/gel010Jena NR (2012) DNA damage by reactive species: mechanisms, mutation and repair. J Biosci 37:503–517. https://doi.org/10.1007/s12038- 012-9218-2Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283:65–87. https://doi.org/10.1016/ j.tox.2011.03.001Kadioglu E (2016) The role of oxidative DNA damage and GSTM1, GSTT1, and hOGG1 gene polymorphisms in coronary artery disease risk. Anatolian J Cardiol. https://doi.org/10.14744/ AnatolJCardiol.2016.6697Kakarougkas A, Jeggo PA (2014) DNA DSB repair pathway choice: an orchestrated handover mechanism. Br J Radiol 87:20130685. https://doi.org/10.1259/bjr.20130685Kershaw RM, Hodges NJ (2012) Repair of oxidative DNA damage is delayed in the Ser326Cys polymorphic variant of the base excision repair protein OGG1. Mutagenesis 27:501–510. https://doi.org/10. 1093/mutage/ges012Kim J (2012) The role of iron metabolism in lung inflammation and injury. J Allergy Ther 01. https://doi.org/10.4172/2155-6121.S4-004Kim J, Peters CE, Arrandale VH, Labrèche F, Ge CB, McLeod CB, Song C, Lavoué J, Davies HW, Nicol A-M, Pahwa M, Demers PA (2018) Burden of lung cancer attributable to occupational diesel engine exhaust exposure in Canada. Occupational and environmental medicine oemed-2017-104950. https://doi.org/10.1136/oemed-2017- 104950Kowalska M, Wegierek-Ciuk A, Brzoska K, Wojewodzka M, Meczynska-Wielgosz S, Gromadzka-Ostrowska J, Mruk R, Øvrevik J, Kruszewski M, Lankoff A (2017) Genotoxic potential of diesel exhaust particles from the combustion of first- and secondgeneration biodiesel fuels—the FuelHealth project. Environ Sci Pollut Res 24:24223–24234. https://doi.org/10.1007/s11356-017- 9995-0Kwakye G, Paoliello M, Mukhopadhyay S, Bowman A, Aschner M (2015) Manganese-induced parkinsonism and Parkinson’s disease: shared and distinguishable features. Int J Environ Res Public Health 12:7519–7540. https://doi.org/10.3390/ijerph120707519Ladd-Acosta C, Fallin MD (2016) The role of epigenetics in genetic and environmental epidemiology. Epigenomics 8:271–283. https://doi. org/10.2217/epi.15.102Lawal AO (2018) Diesel exhaust particles and the induction of macrophage activation and dysfunction. Inflammation 41:356–363. https://doi.org/10.1007/s10753-017-0682-6León-Mejía G, Espitia-Pérez L, Hoyos-Giraldo LS, Da Silva J, Hartmann A, Henriques JAP, Quintana M (2011) Assessment of DNA damage in coal open-cast mining workers using the cytokinesis-blocked micronucleus test and the comet assay. Sci Total Environ 409:686–691. https://doi.org/10.1016/j.scitotenv.2010.10.049León-Mejía G, Luna-Rodríguez I, Trindade C, Oliveros-Ortíz L, AnayaRomero M, Luna-Carrascal J, Navarro-Ojeda N, Ruiz-Benitez M, Franco-Valencia K, Da Silva J, Henriques JAP, Muñoz-Acevedo A, Quintana-Sosa M (2019) Cytotoxic and genotoxic effects in mechanics occupationally exposed to diesel engine exhaust. Ecotoxicol Environ Saf 171:264–273. https://doi.org/10.1016/j. ecoenv.2018.12.067Li H, Hao X, Zhang W, Wei Q, Chen K (2008) The hOGG1 Ser326Cys polymorphism and lung cancer risk: a meta-analysis. Cancer Epidemiol Biomark Prev 17:1739–1745. https://doi.org/10.1158/ 1055-9965.EPI-08-0001Liu H-H, Lin M-H, Chan C-I, Chen H-L (2010) Oxidative damage in foundry workers occupationally co-exposed to PAHs and metals. Int J Hyg Environ Health 213:93–98. https://doi.org/10.1016/j.ijheh. 2009.12.005Liu J, Zhou Z, Lai T, Yin J (2014) Association between XRCC3 Thr241Met polymorphism and risk of brain tumors: a meta-analysis. Tumor Biol 35:1083–1087. https://doi.org/10.1007/s13277-013- 1144-xLu S, Zhang W, Zhang R, Liu P, Wang Q, Shang Y, Wu M, Donaldson K, Wang Q (2015) Comparison of cellular toxicity caused by ambient ultrafine particles and engineered metal oxide nanoparticles. Particle Fibre Toxicol 12:–12. https://doi.org/10.1186/s12989-015-0082-8Mateuca RA, Roelants M, Iarmarcovai G, Aka PV, Godderis L, Tremp A, Bonassi S, Fenech M, Berge-Lefranc J-L, Kirsch-Volders M (2007) hOGG1326, XRCC1399 and XRCC3241 polymorphisms influence micronucleus frequencies in human lymphocytes in vivo. Mutagenesis 23:35–41. https://doi.org/10.1093/mutage/gem040Mazzoli-Rocha F, Fernandes S, Einicker-Lamas M, Zin WA (2010) Roles of oxidative stress in signaling and inflammation induced by particulate matter. Cell Biol Toxicol 26:481–498. https://doi.org/10.1007/ s10565-010-9158-2Michalska MM, Samulak D, Romanowicz H, Bieńkiewicz J, Sobkowski M, Ciesielski K, Smolarz B (2015) Single nucleotide polymorphisms (SNPs) of hOGG1 and XRCC1 DNA repair genes and the risk of ovarian cancer in Polish women. Tumor Biol 36:9457–9463. https://doi.org/10.1007/s13277-015-3707-5Miller MR, Shaw CA, Langrish JP (2012) From particles to patients: oxidative stress and the cardiovascular effects of air pollution. Futur Cardiol 8:577–602. https://doi.org/10.2217/fca.12.43Miller MR, Raftis JB, Langrish JP, McLean SG, Samutrtai P, Connell SP, Wilson S, Vesey AT, Fokkens PHB, Boere AJF, Krystek P, Campbell CJ, Hadoke PWF, Donaldson K, Cassee FR, Newby DE, Duffin R, Mills NL (2017) Inhaled nanoparticles accumulate at sites of vascular disease. ACS Nano 11:4542–4552. https://doi. org/10.1021/acsnano.6b08551Minina VI, Soboleva OA, Glushkov AN, Voronina EN, Sokolova EA, Bakanova ML, Savchenko YA, Ryzhkova AV, Titov RA, Druzhinin VG, Sinitsky MY, Asanov MA (2017) Polymorphisms of GSTM1, GSTT1, GSTP1 genes and chromosomal aberrations in lung cancer patients. J Cancer Res Clin Oncol 143:2235–2243. https://doi.org/ 10.1007/s00432-017-2486-3Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, Loft S (2014) Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. Mutat Res/Rev Mutat Res 762:133–166. https://doi.org/10.1016/j.mrrev.2014.09. 001Moritz E, Pauly K, Bravard A, Hall J, Radicella JP, Epe B (2014) hOGG1-Cys326 variant cells are hypersensitive to DNA repair inhibition by nitric oxide. Carcinogenesis 35:1426–1433. https:// doi.org/10.1093/carcin/bgu066Nemmar A, Yuvaraju P, Beegam S, Pathan J, Kazzam EE, Ali BH (2016) Oxidative stress, inflammation, and DNA damage in multiple organs of mice acutely exposed to amorphous silica nanoparticles. Int J Nanomed 919. https://doi.org/10.2147/IJN.S92278Orlow I, Park BJ, Mujumdar U, Patel H, Siu-Lau P, Clas BA, Downey R, Flores R, Bains M, Rizk N, Dominguez G, Jani J, Berwick M, Begg CB, Kris MG, Rusch VW (2008) DNA damage and repair capacity in patients with lung cancer: prediction of multiple primary tumors. J Clin Oncol 26:3560–3566. https://doi.org/10.1200/JCO.2007.13. 2654Reşitoğlu İA, Altinişik K, Keskin A (2015) The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems. Clean Techn Environ Policy 17:15–27. https://doi.org/10.1007/s10098- 014-0793-9Roberts MR, Shields PG, Ambrosone CB, Nie J, Marian C, Krishnan SS, Goerlitz DS, Modali R, Seddon M, Lehman T, Amend KL, Trevisan M, Edge SB, Freudenheim JL (2011) Single-nucleotide polymorphisms in DNA repair genes and association with breast cancer risk in the web study. Carcinogenesis 32:1223–1230. https://doi.org/10. 1093/carcin/bgr096Rohr P, da Silva J, Erdtmann B, Saffi J, Guecheva TN, Antônio Pêgas Henriques J, Kvitko K (2011) BER gene polymorphisms (OGG1 Ser326Cys and XRCC1 Arg194Trp) and modulation of DNA damage due to pesticides exposure. Environ Mol Mutagen 52:20–27. https://doi.org/10.1002/em.20562Safarinejad MR, Safarinejad S, Shafiei N, Safarinejad S (2013) Association of genetic polymorphism of glutathione S-transferase (GSTM1, GSTT1, GSTP1) with bladder cancer susceptibility. Urologic Oncology: Seminars and Original Investigations 31: 1193–1203. https://doi.org/10.1016/j.urolonc.2011.11.027Schettgen T, Alt A, Schikowsky C, Esser A, Kraus T (2018) Human biomonitoring of polychlorinated biphenyls (PCBs) in plasma of former underground miners in Germany – a case-control study. Int J Hyg Environ Health 221:1007–1011. https://doi.org/10.1016/j. ijheh.2018.06.006Sharma, N., Singh, A., Singh, N., Behera, D., Sharma, S., 2015. Genetic polymorphisms in GSTM1, GSTT1 and GSTP1 genes and risk of lung cancer in a North Indian population. Cancer Epidemiol 39, 947–955. https://doi.org/10.1016/j.canep.2015.10.014Shin S, Song I, Um S (2015) Role of physicochemical properties in nanoparticle toxicity. Nanomaterials 5:1351–1365. https://doi.org/ 10.3390/nano5031351Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191. https://doi.org/10.1016/0014- 4827(88)90265-0Singh S, Kumar V, Singh P, Banerjee BD, Rautela RS, Grover SS, Rawat DS, Pasha ST, Jain SK, Rai A (2012) Influence of CYP2C9, GSTM1, GSTT1 and NAT2 genetic polymorphisms on DNA damage in workers occupationally exposed to organophosphate pesticides. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 741:101–108. https://doi.org/10.1016/j.mrgentox. 2011.11.001Sinitsky MY, Minina VI, Asanov MA, Yuzhalin AE, Ponasenko AV, Druzhinin VG (2017) Association of DNA repair gene polymorphisms with genotoxic stress in underground coal miners. Mutagenesis 32:501–509. https://doi.org/10.1093/mutage/gex018Sogorb MA, Estévez J, Vilanova E (2014) Biomarkers in biomonitoring of xenobiotics. In: Biomarkers in toxicology. Elsevier, pp 965–973. https://doi.org/10.1016/B978-0-12-404630-6.00057-9Stephenson AP, Schneider JA, Nelson BC, Atha DH, Jain A, Soliman KFA, Aschner M, Mazzio E, Renee Reams R (2013) Manganeseinduced oxidative DNA damage in neuronal SH-SY5Y cells: attenuation of thymine base lesions by glutathione and N-acetylcysteine. Toxicol Lett 218:299–307. https://doi.org/10.1016/j.toxlet.2012.12. 024Terzano C, Di Stefano F, Conti V, Graziani E, Petroianni A (2010) Air pollution ultrafine particles: toxicity beyond the lung. Eur Rev Med Pharmacol Sci 14:809–821Thomas P, Fenech M (2011) Buccal micronucleus cytome assay. In: Didenko VV (ed) DNA damage detection in situ, ex vivo, and in vivo. Humana Press, Totowa, NJ, pp 235–248. https://doi.org/ 10.1007/978-1-60327-409-8_17Thomas P, Holland N, Bolognesi C, Kirsch-Volders M, Bonassi S, Zeiger E, Knasmueller S, Fenech M (2009) Buccal micronucleus cytome assay. Nat Protoc 4:825–837. https://doi.org/10.1038/nprot.2009.53Tuimala J, Szekely G, Gundy S, Hirvonen A, Norppa H (2002 Jun) Genetic polymorphisms of DNA repair and xenobioticmetabolizing enzymes: role in mutagen sensitivity. Carcinogenesis. 23(6):1003–1008Vattanasit U, Navasumrit P, Khadka MB, Kanitwithayanun J, Promvijit J, Autrup H, Ruchirawat M (2014) Oxidative DNA damage and inflammatory responses in cultured human cells and in humans exposed to traffic-related particles. Int J Hyg Environ Health 217:23– 33. https://doi.org/10.1016/j.ijheh.2013.03.002Wang Z, Zhang W (2013) Association between XRCC3 Thr241Met polymorphism and colorectal cancer risk. Tumor Biol 34:1421– 1429. https://doi.org/10.1007/s13277-012-0639-1Warkentin MT, Morris D, Bebb G, Brenner DR (2017) The role of DNA repair capacity in lung cancer risk among never-smokers: a systematic review of epidemiologic studies. Cancer Treat Res Commun 13: 13–24. https://doi.org/10.1016/j.ctarc.2017.08.001Yang F, Xiong J, Jia X-E, Gu Z-H, Shi J-Y, Zhao Y, Li J-M, Chen S-J, Zhao W-L (2014) GSTT1 deletion is related to polycyclic aromatic hydrocarbons-induced DNA damage and lymphoma progression. PLoS One 9:e89302. https://doi.org/10.1371/journal.pone.0089302Yuan W, Xu L, Feng Y, Yang Y, Chen W, Wang J, Pang D, Li D (2010) The hOGG1 Ser326Cys polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 122:835–842. https://doi. org/10.1007/s10549-009-0722-5Zhang X, Duan H, Gao F, Li Y, Huang C, Niu Y, Gao W, Yu S, Zheng Y (2015) Increased micronucleus, nucleoplasmic bridge, and nuclear bud frequencies in the peripheral blood lymphocytes of diesel engine exhaust-exposed workers. Toxicol Sci 143:408–417. https:// doi.org/10.1093/toxsci/kfu239Zhang R, Zhang X, Gao S, Liu R (2019) Assessing the in vitro and in vivo toxicity of ultrafine carbon black to mouse liver. Sci Total Environ 655:1334–1341. https://doi.org/10.1016/j.scitotenv.2018.11.295CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/562ba8e9-b700-4140-83e6-a6d13979503a/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/1cb06d3b-2927-47a6-8099-e23ac19af3c6/download733bec43a0bf5ade4d97db708e29b185MD5320.500.12442/5090oai:bonga.unisimon.edu.co:20.500.12442/50902024-08-14 21:52:22.269http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalmetadata.onlyhttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u