Space-occupying lesions identification in mammary glands using a mixed computational strategy
Abstract. The mammary pathology can manifest itself in multiple ways and originates spaceoccupying lesions. The breast cancer is a space-occupying lesion, which is highly prevalent, especially in women, and worldwide it is one of the leading causes of morbidity and mortality in this population. The...
- Autores:
-
Vargas, S
Vera, M I
Vera, M
Salazar-Torres, J
Huérfano, Y
Valbuena, O
Gelvez-Almeida, E
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/5072
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/5072
- Palabra clave:
- Mammary pathology
Breast cancer
Magnetic resonance images
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_b3fc45e5b302932b92ca690b6bccd3ce |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/5072 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Space-occupying lesions identification in mammary glands using a mixed computational strategy |
title |
Space-occupying lesions identification in mammary glands using a mixed computational strategy |
spellingShingle |
Space-occupying lesions identification in mammary glands using a mixed computational strategy Mammary pathology Breast cancer Magnetic resonance images |
title_short |
Space-occupying lesions identification in mammary glands using a mixed computational strategy |
title_full |
Space-occupying lesions identification in mammary glands using a mixed computational strategy |
title_fullStr |
Space-occupying lesions identification in mammary glands using a mixed computational strategy |
title_full_unstemmed |
Space-occupying lesions identification in mammary glands using a mixed computational strategy |
title_sort |
Space-occupying lesions identification in mammary glands using a mixed computational strategy |
dc.creator.fl_str_mv |
Vargas, S Vera, M I Vera, M Salazar-Torres, J Huérfano, Y Valbuena, O Gelvez-Almeida, E |
dc.contributor.author.none.fl_str_mv |
Vargas, S Vera, M I Vera, M Salazar-Torres, J Huérfano, Y Valbuena, O Gelvez-Almeida, E |
dc.subject.eng.fl_str_mv |
Mammary pathology Breast cancer Magnetic resonance images |
topic |
Mammary pathology Breast cancer Magnetic resonance images |
description |
Abstract. The mammary pathology can manifest itself in multiple ways and originates spaceoccupying lesions. The breast cancer is a space-occupying lesion, which is highly prevalent, especially in women, and worldwide it is one of the leading causes of morbidity and mortality in this population. The main image modality for breast cancer detection is the magnetic resonance but this kind of image modality introduces several imperfections that affect the image quality. Some of these imperfections or problems are: inhomogeneity in the anatomical structures, riccian noise and artifacts. These problems make the analysis of the image information a real challenge. To address these problems, in this paper, we propose a computational technique able to extract a space-occupying lesion linked to breast cancer, present in magnetic resonance images. For this, the original image is processed with statisticalarithmetic filters and segmentation algorithms based on thresholding and multi-seed region growing techniques. The results, based on Dice score, show that the proposed technique is suitable for segmenting the breast cancer due high correlation between semi-automatic and manual segmentations. This technique can be useful in the detection, characterization and monitoring of this type of cancer and it can let to medical doctors to realize their work more efficiently. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T22:28:12Z |
dc.date.available.none.fl_str_mv |
2020-03-26T22:28:12Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.eng.fl_str_mv |
article |
dc.identifier.issn.none.fl_str_mv |
17426596 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/5072 |
identifier_str_mv |
17426596 |
url |
https://hdl.handle.net/20.500.12442/5072 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.eng.fl_str_mv |
pdf |
dc.publisher.eng.fl_str_mv |
IOP Publishing |
dc.source.eng.fl_str_mv |
Journal of Physics: Conference Series Vol. 1414 (2019) |
institution |
Universidad Simón Bolívar |
dc.source.uri.eng.fl_str_mv |
https://iopscience.iop.org/article/10.1088/1742-6596/1414/1/012016 |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/1502be90-ae9c-4383-895b-0ddbd65091a0/download https://bonga.unisimon.edu.co/bitstreams/5ad41a02-a0a7-4922-976d-229bb2b89205/download https://bonga.unisimon.edu.co/bitstreams/f7f28839-5225-40e8-867a-a18f4531cb5d/download https://bonga.unisimon.edu.co/bitstreams/9ca7b681-c79e-4c07-80a7-081aabe14095/download https://bonga.unisimon.edu.co/bitstreams/d2cdcc93-aa64-492c-b36e-fb9e9bcfae0e/download https://bonga.unisimon.edu.co/bitstreams/d1966e80-3f7e-4941-b864-cfb4c1dd609f/download https://bonga.unisimon.edu.co/bitstreams/ccb458ef-50ff-4af7-b6f0-f3dc53191cf7/download |
bitstream.checksum.fl_str_mv |
7d8424979b43f49869dc63bb41f99111 4460e5956bc1d1639be9ae6146a50347 733bec43a0bf5ade4d97db708e29b185 dc53cfed4b34255a59610da52fff21e5 62580c4100b9bdd49224cfc2beb5b625 07232d3fbda117277cdcfec2d356543d 40e55b3d9b2905dc6dcacc271f3433a4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076161253179392 |
spelling |
Vargas, Sb210b9ad-a4c4-499d-b415-6941d69678ddVera, M I4c675edd-c7b6-4fee-87e2-feb90cfc363eVera, M847eada8-99d3-4ff1-a613-ae3f62c30f9eSalazar-Torres, J40a2a6c9-3e39-4994-9b5a-1c6112bd8000Huérfano, Y001cc35e-75ac-48b8-9fd0-3c22464ff80fValbuena, O4286f2e0-ce46-49ce-a106-bd00c21a76e9Gelvez-Almeida, E55062614-d175-4da1-834a-d7e54dcc92de2020-03-26T22:28:12Z2020-03-26T22:28:12Z201917426596https://hdl.handle.net/20.500.12442/5072Abstract. The mammary pathology can manifest itself in multiple ways and originates spaceoccupying lesions. The breast cancer is a space-occupying lesion, which is highly prevalent, especially in women, and worldwide it is one of the leading causes of morbidity and mortality in this population. The main image modality for breast cancer detection is the magnetic resonance but this kind of image modality introduces several imperfections that affect the image quality. Some of these imperfections or problems are: inhomogeneity in the anatomical structures, riccian noise and artifacts. These problems make the analysis of the image information a real challenge. To address these problems, in this paper, we propose a computational technique able to extract a space-occupying lesion linked to breast cancer, present in magnetic resonance images. For this, the original image is processed with statisticalarithmetic filters and segmentation algorithms based on thresholding and multi-seed region growing techniques. The results, based on Dice score, show that the proposed technique is suitable for segmenting the breast cancer due high correlation between semi-automatic and manual segmentations. This technique can be useful in the detection, characterization and monitoring of this type of cancer and it can let to medical doctors to realize their work more efficiently.pdfengIOP PublishingAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Journal of Physics: Conference SeriesVol. 1414 (2019)https://iopscience.iop.org/article/10.1088/1742-6596/1414/1/012016Mammary pathologyBreast cancerMagnetic resonance imagesSpace-occupying lesions identification in mammary glands using a mixed computational strategyarticlearticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Latarjet M and Ruiz A 2004 Anatomía humana (Barcelona: Médica Panamericana)Bland K and Copeland E 2007 La mama: manejo multidisciplinario de las enfermedades benignas y malignas (Barcelona: Panamericana)Siegel R, Miller K and Jemal A 2017 Cancer statistics CA: A Cancer Journal for Clinicians 67(1) 7Scholefield J, Duncan J and Rogers K 2014 Review of hospital experience of breast abscesses British Journal of Surgery 74 469Sing A and Gupta B 2015 A novel approach for breast cancer detection and segmentation in a mammogram Procedia Computer Science 54 676Singh V, Romani S, Rashwan H, Akram F, Pandey N, Sarker M 2018 Conditional generative adversarial and convolutional networks for x-ray breast mass segmentation and shape classification 21st International Conference on Medical Image Computing and Computer Assisted Intervention MICCAI 2018 (Granada) vol 11071 (Cham: Springer) p 833Dhungel N, Carneiro G and Bradley A 2015 Tree re-weighted belief propagation using deep learning potentials for mass segmentation from mammograms 12th International Symposium on Biomedical Imaging (ISBI) (New York: IEEE) p 760Zhu W, Xiang X, Tran T, Hager G and Xie X 2018 Adversarial deep structured nets for mass segmentation from mammograms 15th International Symposium on Biomedical Imaging (ISBI) (Washington: IEEE) p 847Su H, Liu F, Xie Y, Xing F, Meyyappan S and Yang L 2015 Region segmentation in histopathological breast cancer images using deep convolutional neural network. 12th International Symposium on Biomedical Imaging (ISBI) (New York: IEEE) p 55Pratt W 2007 Digital image processing (New York: John Wiley & Sons Inc)Huérfano Y, Vera M, Mar A and Bravo A 2019 Integrating a gradient–based difference operator with machine learning techniques in right heart segmentation Journal of Physics: Conference Series 1160 012003Dice L 1945 Measures of the amount of ecologic association between species Ecology 26(3) 29ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf570027https://bonga.unisimon.edu.co/bitstreams/1502be90-ae9c-4383-895b-0ddbd65091a0/download7d8424979b43f49869dc63bb41f99111MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/5ad41a02-a0a7-4922-976d-229bb2b89205/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/f7f28839-5225-40e8-867a-a18f4531cb5d/download733bec43a0bf5ade4d97db708e29b185MD53TEXTSpace_occupying_lesions_MG.pdf.txtSpace_occupying_lesions_MG.pdf.txtExtracted texttext/plain16406https://bonga.unisimon.edu.co/bitstreams/9ca7b681-c79e-4c07-80a7-081aabe14095/downloaddc53cfed4b34255a59610da52fff21e5MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain16927https://bonga.unisimon.edu.co/bitstreams/d2cdcc93-aa64-492c-b36e-fb9e9bcfae0e/download62580c4100b9bdd49224cfc2beb5b625MD56THUMBNAILSpace_occupying_lesions_MG.pdf.jpgSpace_occupying_lesions_MG.pdf.jpgGenerated Thumbnailimage/jpeg1293https://bonga.unisimon.edu.co/bitstreams/d1966e80-3f7e-4941-b864-cfb4c1dd609f/download07232d3fbda117277cdcfec2d356543dMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg3341https://bonga.unisimon.edu.co/bitstreams/ccb458ef-50ff-4af7-b6f0-f3dc53191cf7/download40e55b3d9b2905dc6dcacc271f3433a4MD5720.500.12442/5072oai:bonga.unisimon.edu.co:20.500.12442/50722024-08-14 21:54:21.443http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |