Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection

New opportunities have raised to study the gene function approaches of Trypanosoma cruzi after its genome sequencing in 2005. Functional genomic approaches in Trypanosoma cruzi are challenging due to the reduced tools available for genetic manipulation, as well as to the reduced efficiency of the tr...

Full description

Autores:
Pacheco-Lugo, Lisandro
Díaz-Olmos, Yirys
Sáenz-García, José
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/1877
Acceso en línea:
http://hdl.handle.net/20.500.12442/1877
Palabra clave:
Transfection
Nucleofection
Electroporation
Trypanosoma cruzi
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_b3e849cb81684d7385ff06e5a60d6ce4
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/1877
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection
title Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection
spellingShingle Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection
Transfection
Nucleofection
Electroporation
Trypanosoma cruzi
title_short Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection
title_full Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection
title_fullStr Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection
title_full_unstemmed Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection
title_sort Effective gene delivery to Trypanosoma cruzi epimastigotes through nucleofection
dc.creator.fl_str_mv Pacheco-Lugo, Lisandro
Díaz-Olmos, Yirys
Sáenz-García, José
dc.contributor.author.none.fl_str_mv Pacheco-Lugo, Lisandro
Díaz-Olmos, Yirys
Sáenz-García, José
dc.subject.eng.fl_str_mv Transfection
Nucleofection
Electroporation
Trypanosoma cruzi
topic Transfection
Nucleofection
Electroporation
Trypanosoma cruzi
description New opportunities have raised to study the gene function approaches of Trypanosoma cruzi after its genome sequencing in 2005. Functional genomic approaches in Trypanosoma cruzi are challenging due to the reduced tools available for genetic manipulation, as well as to the reduced efficiency of the transient transfection conducted through conventional methods. The Amaxa nucleofector device was systematically tested in the present study in order to improve the electroporation conditions in the epimastigote forms of T. cruzi. The transfection efficiency was quantified using the green fluorescent protein (GFP) as reporter gene followed by cell survival assessment. The herein used nucleofection parameters have increased the survival rates (N90%) and the transfection efficiency by approximately 35%. The small amount of epimastigotes and DNA required for the nucleofection can turn the method adopted here into an attractive tool for high throughput screening (HTS) applications, and for gene editing in parasites where genetic manipulation tools remain relatively scarce.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-01
dc.date.accessioned.none.fl_str_mv 2018-03-20T20:58:15Z
dc.date.available.none.fl_str_mv 2018-03-20T20:58:15Z
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 13835769
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/1877
identifier_str_mv 13835769
url http://hdl.handle.net/20.500.12442/1877
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv Japanese Society of Parasitology
dc.source.eng.fl_str_mv Parasitology International
dc.source.spa.fl_str_mv Vol. 66, No.3 (2017)
institution Universidad Simón Bolívar
dc.source.uri.none.fl_str_mv https://www.sciencedirect.com/science/article/pii/S1383576916304330
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/5ec6ee34-bf44-4662-82aa-af5889025293/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv DSpace UniSimon
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1812100525724794880
spelling Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Pacheco-Lugo, Lisandro4ffb7ad5-96a8-4959-a2e5-59d447d8e253-1Díaz-Olmos, Yirysa494db94-d580-4f7b-ab06-58058add81b7-1Sáenz-García, Joséd76eb640-8f14-4f73-8603-7fa5e4b2e127-12018-03-20T20:58:15Z2018-03-20T20:58:15Z2017-0113835769http://hdl.handle.net/20.500.12442/1877New opportunities have raised to study the gene function approaches of Trypanosoma cruzi after its genome sequencing in 2005. Functional genomic approaches in Trypanosoma cruzi are challenging due to the reduced tools available for genetic manipulation, as well as to the reduced efficiency of the transient transfection conducted through conventional methods. The Amaxa nucleofector device was systematically tested in the present study in order to improve the electroporation conditions in the epimastigote forms of T. cruzi. The transfection efficiency was quantified using the green fluorescent protein (GFP) as reporter gene followed by cell survival assessment. The herein used nucleofection parameters have increased the survival rates (N90%) and the transfection efficiency by approximately 35%. The small amount of epimastigotes and DNA required for the nucleofection can turn the method adopted here into an attractive tool for high throughput screening (HTS) applications, and for gene editing in parasites where genetic manipulation tools remain relatively scarce.engJapanese Society of ParasitologyParasitology InternationalVol. 66, No.3 (2017)https://www.sciencedirect.com/science/article/pii/S1383576916304330TransfectionNucleofectionElectroporationTrypanosoma cruziEffective gene delivery to Trypanosoma cruzi epimastigotes through nucleofectionarticlehttp://purl.org/coar/resource_type/c_6501J.R. Coura, P.A. Viñas, Chagas disease: a new worldwide challenge, Nature 465 (2010) S6–S7, http://dx.doi.org/10.1038/nature09221.N.M. El-Sayed, P.J.Myler, D.C. Bartholomeu, D. Nilsson, G. Aggarwal, A.-N. Tran, et al., The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease, Science 309 (2005) 409–415, http://dx.doi.org/10.1126/science.1112631.H. Ngô, C. Tschudi, K. Gull, E. Ullu, Double-stranded RNA induces mRNA degradation in Trypanosoma brucei, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 14687–14692, http:// www.ncbi.nlm.nih.gov/pubmed/9843950.W.D. DaRocha, K. Otsu, S.M.R. Teixeira, J.E. Donelson, Tests of cytoplasmic RNA interference (RNAi) and construction of a tetracycline-inducible T7 promoter system in Trypanosoma cruzi, Mol. Biochem. Parasitol. 133 (2004) 175–186, http://www. ncbi.nlm.nih.gov/pubmed/14698430.C. Subramaniam, P. Veazey, S. Redmond, J. Hayes-Sinclair, E. Chambers, M. Carrington, K. Gull, K. Matthews, D. Horn, M.C. Field, Chromosome-wide analysis of gene function by RNA interference in the African trypanosome, Eukaryot. Cell. 5 (2006) 1539–1549, http://dx.doi.org/10.1128/EC.00141-06.J.C. Morris, Z. Wang, M.E. Drew, P.T. Englund, Glycolysis modulates trypanosome glycoprotein expression as revealed by an RNAi library, EMBO J. 21 (2002) 4429–4438, http://www.ncbi.nlm.nih.gov/pubmed/12198145.S. Alsford, D.J. Turner, S.O. Obado, A. Sanchez-Flores, L. Glover, M. Berriman, C. Hertz- Fowler, D. Horn, High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome, Genome Res. 21 (2011) 915–924, http://dx.doi.org/10.1101/gr.115089.110S. Alsford, S. Eckert, N. Baker, L. Glover, A. Sanchez-Flores, K.F. Leung, D.J. Turner, M.C. Field, M. Berriman, D. Horn, High-throughput decoding of antitrypanosomal drug efficacy and resistance, Nature 482 (2012) 232–236, http://dx.doi.org/10. 1038/nature10771.D. Peng, S.P. Kurup, P.Y. Yao, T.A. Minning, R.L. Tarleton, CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi, MBio 6 (2015) http://dx.doi.org/10.1128/mBio.02097-14 e02097-2014.N. Lander, Z.-H. Li, S. Niyogi, R. Docampo, CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment, MBio 6 (2015) e01012–e01015, http://dx.doi.org/10.1128/mBio. 01012-15.G. de A. Burle-Caldas, V. Grazielle-Silva, L.A. Laibida, W.D. DaRocha, S.M.R. Teixeira, Expanding the tool box for genetic manipulation of Trypanosoma cruzi, Mol. Biochem. Parasitol. 203 (2015) 25–33, http://dx.doi.org/10.1016/j.molbiopara.2015. 10.004.G. Burkard, C.M. Fragoso, I. Roditi, Highly efficient stable transformation of bloodstream forms of Trypanosoma brucei, Mol. Biochem. Parasitol. 153 (2007) 220–223, http://dx.doi.org/10.1016/j.molbiopara.2007.02.008.G. Schumann Burkard, P. Jutzi, I. Roditi, Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters, Mol. Biochem. Parasitol. 175 (2011) 91–94, http://dx.doi.org/10.1016/j.molbiopara.2010.09.002.P.K. Padmanabhan, R.B. Polidoro, N.S. Barteneva, R.T. Gazzinelli, B.A. Burleigh, Transient transfection and expression of foreign and endogenous genes in the intracellular stages of Trypanosoma cruzi, Mol. Biochem. Parasitol. 198 (2014) 100–103, http://dx.doi.org/10.1016/j.molbiopara.2015.02.001.W.D. DaRocha, R.A. Silva, D.C. Bartholomeu, S.F. Pires, J.M. Freitas, A.M.Macedo, M.P. Vazquez, M.J. Levin, S.M.R. Teixeira, Expression of exogenous genes in Trypanosoma cruzi: improving vectors and electroporation protocols, Parasitol. Res. 92 (2004) 113–120, http://dx.doi.org/10.1007/s00436-003-1004-5.M.P. Vazquez, M.J. Levin, Functional analysis of the intergenic regions of TcP2beta gene loci allowed the construction of an improved Trypanosoma cruzi expression vector, Gene 239 (1999) 217–225.D. Xu, C. Pérez Brandán, M. Basombrío, R.L. Tarleton, Evaluation of high efficiency gene knockout strategies for Trypanosoma cruzi, BMC Microbiol. 9 (2009) 90, http://dx.doi.org/10.1186/1471-2180-9-90.S. Su, B. Hu, J. Shao, B. Shen, J. Du, Y. Du, J. Zhou, L. Yu, L. Zhang, F. Chen, H. Sha, L. Cheng, F. Meng, Z. Zou, X. Huang, B. Liu, CRISPR-Cas9 mediated efficient PD-1 disruption on human primary T cells from cancer patients, Sci. Rep. 6 (2016) 20070, http://dx.doi.org/10.1038/srep20070.L. Chicaybam, A.L. Sodre, B.A. Curzio, M.H. Bonamino, An efficient low cost method for gene transfer to T lymphocytes, PLoS One 8 (2013), e60298. http://dx.doi.org/ 10.1371/journal.pone.0060298.LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bonga.unisimon.edu.co/bitstreams/5ec6ee34-bf44-4662-82aa-af5889025293/download8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12442/1877oai:bonga.unisimon.edu.co:20.500.12442/18772019-04-11 21:51:27.293metadata.onlyhttps://bonga.unisimon.edu.coDSpace UniSimonbibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=