Classical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics
Mid-infrared (MIR) laser spectroscopy was used to detect the presence of residues of high explosives (HEs) on fabrics. The discrimination of the vibrational signals of HEs from a highly MIR-absorbing substrate was achieved by a simple and fast spectral evaluation without preparation of standards usi...
- Autores:
-
Pacheco-Londoño, Leonardo C.
Aparicio-Bolaño, Joaquín A.
Galán-Freyle, Nataly J.
Román-Ospino, Andrés D.
Ruiz-Caballero, Jose L.
Hernández-Rivera, Samuel P.
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/2453
- Acceso en línea:
- http://hdl.handle.net/20.500.12442/2453
- Palabra clave:
- Quantum cascade laser spectroscopy
QCL
High explosives
HEs
Classical least squares
CLS
Natural and synthetic fabrics
Discriminant analysis
DA
- Rights
- License
- Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id |
USIMONBOL2_b08eca97a865ecd89dcdf82e8017a853 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/2453 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Classical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics |
title |
Classical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics |
spellingShingle |
Classical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics Quantum cascade laser spectroscopy QCL High explosives HEs Classical least squares CLS Natural and synthetic fabrics Discriminant analysis DA |
title_short |
Classical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics |
title_full |
Classical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics |
title_fullStr |
Classical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics |
title_full_unstemmed |
Classical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics |
title_sort |
Classical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics |
dc.creator.fl_str_mv |
Pacheco-Londoño, Leonardo C. Aparicio-Bolaño, Joaquín A. Galán-Freyle, Nataly J. Román-Ospino, Andrés D. Ruiz-Caballero, Jose L. Hernández-Rivera, Samuel P. |
dc.contributor.author.none.fl_str_mv |
Pacheco-Londoño, Leonardo C. Aparicio-Bolaño, Joaquín A. Galán-Freyle, Nataly J. Román-Ospino, Andrés D. Ruiz-Caballero, Jose L. Hernández-Rivera, Samuel P. |
dc.subject.eng.fl_str_mv |
Quantum cascade laser spectroscopy QCL High explosives HEs Classical least squares CLS Natural and synthetic fabrics Discriminant analysis DA |
topic |
Quantum cascade laser spectroscopy QCL High explosives HEs Classical least squares CLS Natural and synthetic fabrics Discriminant analysis DA |
description |
Mid-infrared (MIR) laser spectroscopy was used to detect the presence of residues of high explosives (HEs) on fabrics. The discrimination of the vibrational signals of HEs from a highly MIR-absorbing substrate was achieved by a simple and fast spectral evaluation without preparation of standards using the classical least squares (CLS) algorithm. Classical least squares focuses on minimizing the differences between the spectral features of the actual spectra acquired using MIR spectroscopy and the spectral features of calculated spectra modeled from linear combinations of the spectra of neat components: HEs, fabrics, and bias. Samples in several combinations of cotton fabrics/HEs were used to validate the methodology. Several experiments were performed focusing on binary, ternary, and quaternary mixtures of TNT, RDX, PETN, and fabrics. The parameters obtained from linear combinations of the calculated spectra were used to perform discrimination analyses and to determine the sensitivity and selectivity of HEs with respect to the substrates and to each other. However, discrimination analysis was not necessary to achieve successful detection of HEs on cotton fabric substrates. The RDX signals (mRDX>0.02 mg) on cotton were used to calculate the limit of detection (LOD). The signalto- noise ratios (S/N) calculated from the spectra of cotton dosed with decreasing masses of RDX until S/N&3 resulted in a LOD of 15–33 mg, depending on the vibrational band used. Linear fits generated by comparing the mass dosed RDX with the fraction predicted were also used to calculate the LOD based on the uncertainty of the blank and the slope. This procedure resulted in a LOD of 58 mg. Probably the most representative value of the method LOD was calculated using an interpolation of a threshold determined using the predicted average value for the blank plus 3.28 times the standard deviations (p-value threshold) for low surface dosages of RDX (LOD¼40 mg). The contribution demonstrates that to achieve HE detection on fabrics using the proposed algorithm, i.e., determining the presence/absence of HEs on the substrates, the library must contain the spectra of HEs, substrates, and potential interferents or that these spectra be added to the models in the field. If the model does not contain the spectra of the fabric components, there is a high probability of finding false positives for clean samples (no HEs) and a low probability for failed detection in samples with HEs. More work will be required to demonstrate that these new approaches to HE detection work on real-world samples and when contaminating materials are present in the samples. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-01-17T16:07:03Z |
dc.date.available.none.fl_str_mv |
2019-01-17T16:07:03Z |
dc.date.issued.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
19433530 |
dc.identifier.uri.eng.fl_str_mv |
http://hdl.handle.net/20.500.12442/2453 |
identifier_str_mv |
19433530 |
url |
http://hdl.handle.net/20.500.12442/2453 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional |
rights_invalid_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
dc.publisher.eng.fl_str_mv |
Society for Applied Spectroscopy |
dc.source.eng.fl_str_mv |
Applied Spectroscopy |
dc.source.spa.fl_str_mv |
Vol. 73, No. 1 (2019) |
institution |
Universidad Simón Bolívar |
dc.source.uri.eng.fl_str_mv |
https://journals.sagepub.com/doi/10.1177/0003702818780414 |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/e13b73e0-6145-4748-8f02-d00c2e363f42/download https://bonga.unisimon.edu.co/bitstreams/9b80a69e-571d-4536-9306-06c582032bc6/download https://bonga.unisimon.edu.co/bitstreams/b331c652-7d77-44ef-aa32-6fbef0b6b66e/download https://bonga.unisimon.edu.co/bitstreams/0fcf7306-addf-4fb3-8b18-5fd7807c812e/download https://bonga.unisimon.edu.co/bitstreams/ed58540a-1aa9-42af-a841-6b675b184c89/download https://bonga.unisimon.edu.co/bitstreams/b2bd169b-cced-4d6d-84f9-ffe0375c7470/download |
bitstream.checksum.fl_str_mv |
b470be605419cf1c398d85f280dcc342 3fdc7b41651299350522650338f5754d 3b562802f4ff07f8819a36873b6331d8 39f4083e8d66794b16dc83bafd8e37c7 ae4c3cb2cfb9f6f7d00c60bf2d296ba1 1f1f4fd4707c0430259b868cd7b84b79 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076153280856064 |
spelling |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Pacheco-Londoño, Leonardo C.fa7d491b-ee0d-46b6-99d0-ce4a9b8c8763-1Aparicio-Bolaño, Joaquín A.c6ef9abf-6d4c-4f68-8548-c3758acda329-1Galán-Freyle, Nataly J.3fcf4986-14a3-49f8-9db0-165bd9e7b51f-1Román-Ospino, Andrés D.5359125f-0092-4729-95b9-133e0c1dc80f-1Ruiz-Caballero, Jose L.693ddcc5-4d44-49f8-bdba-24b5a40753af-1Hernández-Rivera, Samuel P.ead5cd23-9551-47a2-962c-4a2b7f82539b-12019-01-17T16:07:03Z2019-01-17T16:07:03Z201919433530http://hdl.handle.net/20.500.12442/2453Mid-infrared (MIR) laser spectroscopy was used to detect the presence of residues of high explosives (HEs) on fabrics. The discrimination of the vibrational signals of HEs from a highly MIR-absorbing substrate was achieved by a simple and fast spectral evaluation without preparation of standards using the classical least squares (CLS) algorithm. Classical least squares focuses on minimizing the differences between the spectral features of the actual spectra acquired using MIR spectroscopy and the spectral features of calculated spectra modeled from linear combinations of the spectra of neat components: HEs, fabrics, and bias. Samples in several combinations of cotton fabrics/HEs were used to validate the methodology. Several experiments were performed focusing on binary, ternary, and quaternary mixtures of TNT, RDX, PETN, and fabrics. The parameters obtained from linear combinations of the calculated spectra were used to perform discrimination analyses and to determine the sensitivity and selectivity of HEs with respect to the substrates and to each other. However, discrimination analysis was not necessary to achieve successful detection of HEs on cotton fabric substrates. The RDX signals (mRDX>0.02 mg) on cotton were used to calculate the limit of detection (LOD). The signalto- noise ratios (S/N) calculated from the spectra of cotton dosed with decreasing masses of RDX until S/N&3 resulted in a LOD of 15–33 mg, depending on the vibrational band used. Linear fits generated by comparing the mass dosed RDX with the fraction predicted were also used to calculate the LOD based on the uncertainty of the blank and the slope. This procedure resulted in a LOD of 58 mg. Probably the most representative value of the method LOD was calculated using an interpolation of a threshold determined using the predicted average value for the blank plus 3.28 times the standard deviations (p-value threshold) for low surface dosages of RDX (LOD¼40 mg). The contribution demonstrates that to achieve HE detection on fabrics using the proposed algorithm, i.e., determining the presence/absence of HEs on the substrates, the library must contain the spectra of HEs, substrates, and potential interferents or that these spectra be added to the models in the field. If the model does not contain the spectra of the fabric components, there is a high probability of finding false positives for clean samples (no HEs) and a low probability for failed detection in samples with HEs. More work will be required to demonstrate that these new approaches to HE detection work on real-world samples and when contaminating materials are present in the samples.engSociety for Applied SpectroscopyApplied SpectroscopyVol. 73, No. 1 (2019)https://journals.sagepub.com/doi/10.1177/0003702818780414Quantum cascade laser spectroscopyQCLHigh explosivesHEsClassical least squaresCLSNatural and synthetic fabricsDiscriminant analysisDAClassical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabricsarticlehttp://purl.org/coar/resource_type/c_6501J.E. Parmeter. ‘‘The Challenge of Standoff Explosives Detection’’. In: 38th Annual 2004 International Carnahan Conference on Security Technology, 2004. Pp. 355–358.J.C. Carter, S.M. Angel, M. Lawrence-Snyder, J. Scaffidi, et al. ‘‘Standoff Detection of High Explosive Materials at 50 Meters in Ambient Light Conditions Using a Small Raman Instrument’’. Appl. Spectrosc. 2005. 59(6): 769–775.W. Ortiz-Rivera, L.C. Pacheco-London˜o, J.R. Castro-Suarez, H. Felix- Rivera, et al. ‘‘Vibrational Spectroscopy Standoff Detection of Threat Chemicals’’. In: Defense + Commercial Sensing, Micro and Nanotechnology Sensors, Systems, and Applications III. Proc. SPIE. 2011. 8031: 803129.J. Moros, J.A. Lorenzo, K. Novotny´, J.J. Laserna. ‘‘Fundamentals of Stand-Off Raman Scattering Spectroscopy for Explosive Fingerprinting’’. J. Raman Spectrosc. 2013. 44(1): 121–130.S.Wallin, A. Pettersson, H. O ¨ stmark, A. Hobro. ‘‘Laser-Based Standoff Detection of Explosives: A Critical Review’’. Anal. Bioanal. Chem. 2009. 395(2): 259–274.N.J. Gala´n-Freyle, L.C. Pacheco-London˜o, A.M. Figueroa-Navedo, S.P. Hernandez-Rivera. ‘‘Standoff Detection of Highly Energetic Materials Using Laser-Induced Thermal Excitation of Infrared Emission’’. Appl. Spectrosc. 2015. 69(5): 535–544.J.R. Castro-Suarez, L.C. Pacheco-London˜o, M. Ve´lez-Reyes, M. Diem, et al. ‘‘FT-IR Standoff Detection of Thermally Excited Emissions of Trinitrotoluene (TNT) Deposited on Aluminum Substrates’’. Appl. Spectrosc. 2013. 67(2): 181–186.J. Suter, B. Bernacki, M. Phillips. ‘‘Spectral and Angular Dependence of Mid-Infrared Diffuse Scattering from Explosives Residues for Standoff Detection Using External Cavity Quantum Cascade Lasers’’. Appl. Phys. B. 2012. 108(4): 965–974.L.C. Pacheco-London˜o, W. Ortiz-Rivera, O.M. Primera-Pedrozo, S.P. Herna´ndez-Rivera. ‘‘Vibrational Spectroscopy Standoff Detection of Explosives’’. Anal. Bioanal. Chem. 2009. 395(2): 323–335.A. Pettersson, I. Johansson, S. Wallin, M. Nordberg, et al. ‘‘Near Real- Time Standoff Detection of Explosives in a Realistic Outdoor Environment at 55m Distance’’. Propellants Explos. Pyrotech. 2009. 34(4): 297–306.J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, et al. ‘‘Quantum Cascade Laser’’. Science. 1994. 264(5158): 553–556.L. Hvozdara, N. Pennington, M. Kraft, M. Karlowatz, et al. ‘‘Quantum Cascade Lasers for Mid-Infrared Spectroscopy’’. Vib. Spectrosc. 2002. 30(1): 53–58.P.C. Castillo, I. Sydoryk, B. Gross, F. Moshary. ‘‘Ambient Detection of CH4 and N2O by Quantum Cascade Laser’’. In: Advanced Environmental, Chemical, and Biological Sensing Technologies X. Proc. SPIE. 2013. 8718: 87180J. doi: 10.1117/12.2016294.C. Kumar, N. Patel. ‘‘Quantum Cascade Lasers and Applications in Defense and Security’’. In: Photonics Society Summer Topical Meeting Series, 2011 IEEE. 2011. Pp. 49–50.C. Kumar, N. Patel. ‘‘Mid Wave Infrared and Long Wave Infrared QCLs and their Applications to Sensors’’. In: Optical Chemical and Biological Sensors II session. Optical Sensors 2013. Rio Grande, Puerto Rico, USA; July 14–17, 2013. Paper SW2B.E. Normand, I. Howieson, M. McCulloch, P. Black. ‘‘Quantum Cascade Laser (QCL) Based Sensor for the Detection of Explosive Compounds’’. In: Optics and Photonics for Counterterrorism and Crime Fighting II. Proc. SPIE. 2006. 6402: 64020G. doi: 10.1117/ 12.695423.C.K.N. Patel. ‘‘Laser Based In-Situ and Standoff Detection of Chemical Warfare Agents and Explosives’’. In: Optically Based Biological and Chemical Detection for Defence V. Proc. SPIE. 2009. 7484: 748402. doi: 10.1117/12.835883.C.K.N. Patel, A. Lyakh. ‘‘High Power Quantum Cascade Lasers for Infrared Countermeasures, Targeting and Illumination, Beacons and Standoff Detection of Explosives and CWAs’’. In: T. George, A.K. Dutta, M.S. Islam, editors. Micro- and Nanotechnology Sensors, Systems, and Applications VII. Proc. SPIE. 2015. 9467: 946702.J.R. Castro-Suarez, M. Hidalgo-Santiago, S.P. Herna´ndez-Rivera. ‘‘Detection of Highly Energetic Materials on Non-Reflective Substrates Using Quantum Cascade Laser Spectroscopy’’. Appl. Spectrosc. 2015. 69(9): 1023–1035.L. Zhang, G. Tian, J. Li, B. Yu. ‘‘Applications of Absorption Spectroscopy Using Quantum Cascade Lasers’’. Appl. Spectrosc. 2014. 68(10): 1095–1107.C.W. van Neste, L.R. Senesac, T. Thundat. ‘‘Standoff Spectroscopy of Surface Adsorbed Chemicals’’. Anal. Chem. 2009. 81(5): 1952–1956.C. Charlton, A. Katzir, B. Mizaikoff. ‘‘Infrared Evanescent Field Sensing with Quantum Cascade Lasers and Planar Silver Halide Waveguides’’. Anal. Chem. 2005. 77(14): 4398–4403.L. Ciaffoni, G. Hancock, J.J. Harrison, J.-P.H. van Helden, et al. ‘‘Demonstration of a Mid-Infrared Cavity Enhanced Absorption Spectrometer for Breath Acetone Detection’’. Anal. Chem. 2012. 85(2): 846–850.J. Kohoutek, A. Bonakdar, R. Gelfand, D. Dey, et al. ‘‘Integrated All-Optical Infrared Switchable Plasmonic Quantum Cascade Laser’’. Nano Lett. 2012. 12(5): 2537–2541.M.R. Kole, R.K. Reddy, M.V. Schulmerich, M.K. Gelber, et al. ‘‘Discrete Frequency Infrared Microspectroscopy and Imaging with a Tunable Quantum Cascade Laser’’. Anal. Chem. 2012. 84(23): 10366–10372.B. Lendl, J. Frank, R. Schindler, A. Mu¨ller, et al. ‘‘Mid-Infrared Quantum Cascade Lasers for Flow Injection Analysis’’. Anal. Chem. 2000. 72(7): 1645–1648.A. Mertiri, H. Altug, M.K. Hong, P. Mehta, et al. ‘‘Nonlinear Midinfrared Photothermal Spectroscopy Using Zharov Splitting and Quantum Cascade Lasers’’. ACS Photonics. 2014. 1(8): 696–702.M.A. Pleitez, T. Lieblein, A. Bauer, O. Hertzberg, et al. ‘‘In Vivo Noninvasive Monitoring of Glucose Concentration in Human Epidermis by Mid-Infrared Pulsed Photoacoustic Spectroscopy’’. Anal. Chem. 2012. 85(2): 1013–1020.A. Ru¨ther, M. Pfeifer, V.A. Lo´renz-Fonfrı´a, S. Lu¨deke. ‘‘pH Titration Monitored by Quantum Cascade Laser-Based Vibrational Circular Dichroism’’. J. Phys. Chem. B. 2014. 118(14): 3941–3949.K. Wo¨ rle, F. Seichter, A. Wilk, C. Armacost, et al. ‘‘Breath Analysis with Broadly Tunable Quantum Cascade Lasers’’. Anal. Chem. 2013. 85(5): 2697–2702.K. Yeh, S. Kenkel, J.-N. Liu, R. Bhargava. ‘‘Fast Infrared Chemical Imaging with a Quantum Cascade Laser’’. Anal. Chem. 2014. 87(1): 485–493.D.C. Grills, A.R. Cook, E. Fujita, M.W. George, et al. ‘‘Application of External-Cavity Quantum Cascade Infrared Lasers to Nanosecond Time-Resolved Infrared Spectroscopy of Condensed-Phase Samples Following Pulse Radiolysis’’. Appl. Spectrosc. 2010. 64(6): 563–570.E.L. Holthoff, L.S. Marcus, P.M. Pellegrino. ‘‘Quantum Cascade Laser Based Photoacoustic Spectroscopy for Depth Profiling Investigations of Condensed-Phase Materials’’. Appl. Spectrosc. 2012. 66(9): 987–992.S. Schaden, A. Domı´nguez-Vidal, B. Lendl. ‘‘On-Line Reaction Monitoring in the Liquid Phase Using Two Mid-Infrared Quantum Cascade Lasers Simultaneously’’. Appl. Spectrosc. 2006. 60(5): 568–571.N.B. Gallagher, T.A. Blake, P.L. Gassman, J.M. Shaver, et al. ‘‘Multivariate Curve Resolution Applied to Infrared Reflection Measurements of Soil Contaminated with an Organophosphorus Analyte’’. Appl. Spectrosc. 2006. 60(7): 713–722.N.J. Gala´n-Freyle, L.C. Pacheco-London˜o, A.D. Roma´n-Ospino, S.P. Hernandez-Rivera. ‘‘Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations’’. Appl. Spectrosc. 2016. 70(9): 1511–1519.J.N. Miller, J.C. Miller. Estadistica y Quimiometria Para Quimica Analitica. Madrid: Prentice Hall, 2002.R. Infante-Castillo, L. Pacheco-London˜o, S.P. Herna´ndez-Rivera. ‘‘Vibrational Spectra and Structure of RDX and its 13C- and 15N-Labeled Derivatives: A Theoretical and Experimental Study’’. Spectrochim. Acta, Part A. 2010. 76(2): 137–141.R. Infante-Castillo, L.C. Pacheco-London˜o, S.P. Herna´ndez-Rivera. ‘‘Monitoring the a!b Solid–Solid Phase Transition of RDX with Raman Spectroscopy: A Theoretical and Experimental Study’’. J. Mol. Struct. 2010. 970(1–3): 51–58.J.L. Ruiz-Caballero, J.A. Aparicio-Bolan˜o, A.M. Figueroa-Navedo, L.C. Pacheco-London˜o, et al. ‘‘Optical Properties of b-RDX Thin Films Deposited on Gold and Stainless Steel Substrates Calculated from Reflection–Absorption Infrared Spectra’’. Appl. Spectrosc. 2017. 71(8): 1990–2000.A.M. Figueroa-Navedo, J.L. Ruiz-Caballero, L.C. Pacheco-London˜o, S.P. Herna´ndez-Rivera. ‘‘Characterization of a- and b-RDX Polymorphs in Crystalline Deposits on Stainless Steel Substrates’’. Cryst. Growth Des. 2016. 16(7): 3631–3638.G.L. Long, J.D. Winefordner. ‘‘Limit of Detection A Closer Look at the IUPAC Definition’’. Anal. Chem. 1983. 55(07): 712A–724A.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf2102048https://bonga.unisimon.edu.co/bitstreams/e13b73e0-6145-4748-8f02-d00c2e363f42/downloadb470be605419cf1c398d85f280dcc342MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/9b80a69e-571d-4536-9306-06c582032bc6/download3fdc7b41651299350522650338f5754dMD52TEXTClassical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics.pdf.txtClassical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics.pdf.txtExtracted texttext/plain61877https://bonga.unisimon.edu.co/bitstreams/b331c652-7d77-44ef-aa32-6fbef0b6b66e/download3b562802f4ff07f8819a36873b6331d8MD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain63443https://bonga.unisimon.edu.co/bitstreams/0fcf7306-addf-4fb3-8b18-5fd7807c812e/download39f4083e8d66794b16dc83bafd8e37c7MD55THUMBNAILClassical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics.pdf.jpgClassical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics.pdf.jpgGenerated Thumbnailimage/jpeg1743https://bonga.unisimon.edu.co/bitstreams/ed58540a-1aa9-42af-a841-6b675b184c89/downloadae4c3cb2cfb9f6f7d00c60bf2d296ba1MD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5490https://bonga.unisimon.edu.co/bitstreams/b2bd169b-cced-4d6d-84f9-ffe0375c7470/download1f1f4fd4707c0430259b868cd7b84b79MD5620.500.12442/2453oai:bonga.unisimon.edu.co:20.500.12442/24532024-07-26 03:11:34.209open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4= |