A Posterior Ensemble Kalman Filter Based On A Modified Cholesky Decomposition

In this paper, we propose a posterior ensemble Kalman filter (EnKF) based on a modified Cholesky decomposition. The main idea behind our approach is to estimate the moments of the analysis distribution based on an ensemble of model realizations. The method proceeds as follows: initially, an estimate...

Full description

Autores:
Nino-Ruiz, Elias D.
Mancilla, Alfonso
Calabria, Juan C.
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/1586
Acceso en línea:
http://hdl.handle.net/20.500.12442/1586
Palabra clave:
Ensemble Kalman Filter
Posterior Ensemble
Modified Cholesky Decomposition
Rights
License
licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_adfde0bf60c70cbdff9f53d8561533c1
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/1586
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv A Posterior Ensemble Kalman Filter Based On A Modified Cholesky Decomposition
title A Posterior Ensemble Kalman Filter Based On A Modified Cholesky Decomposition
spellingShingle A Posterior Ensemble Kalman Filter Based On A Modified Cholesky Decomposition
Ensemble Kalman Filter
Posterior Ensemble
Modified Cholesky Decomposition
title_short A Posterior Ensemble Kalman Filter Based On A Modified Cholesky Decomposition
title_full A Posterior Ensemble Kalman Filter Based On A Modified Cholesky Decomposition
title_fullStr A Posterior Ensemble Kalman Filter Based On A Modified Cholesky Decomposition
title_full_unstemmed A Posterior Ensemble Kalman Filter Based On A Modified Cholesky Decomposition
title_sort A Posterior Ensemble Kalman Filter Based On A Modified Cholesky Decomposition
dc.creator.fl_str_mv Nino-Ruiz, Elias D.
Mancilla, Alfonso
Calabria, Juan C.
dc.contributor.author.none.fl_str_mv Nino-Ruiz, Elias D.
Mancilla, Alfonso
Calabria, Juan C.
dc.subject.eng.fl_str_mv Ensemble Kalman Filter
Posterior Ensemble
Modified Cholesky Decomposition
topic Ensemble Kalman Filter
Posterior Ensemble
Modified Cholesky Decomposition
description In this paper, we propose a posterior ensemble Kalman filter (EnKF) based on a modified Cholesky decomposition. The main idea behind our approach is to estimate the moments of the analysis distribution based on an ensemble of model realizations. The method proceeds as follows: initially, an estimate of the precision background error covariance matrix is computed via a modified Cholesky decomposition and then, based on rank-one updates, the Cholesky factors of the inverse background error covariance matrix are updated in order to obtain an estimate of the inverse analysis covariance matrix. The special structure of the Cholesky factors can be exploited in order to obtain a matrix-free implementation of the EnKF. Once the analysis covariance matrix is estimated, the posterior mode of the distribution can be approximated and samples about it are taken in order to build the posterior ensemble. Experimental tests are performed making use of the Lorenz 96 model in order to assess the accuracy of the proposed implementation. The results reveal that, the accuracy of the proposed implementation is similar to that of the well-known local ensemble transform Kalman filter and even more, the use of our estimator reduces the impact of sampling errors during the assimilation of observations.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-06-12
dc.date.accessioned.none.fl_str_mv 2018-02-05T15:33:52Z
dc.date.available.none.fl_str_mv 2018-02-05T15:33:52Z
dc.type.spa.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 18770509
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/1586
identifier_str_mv 18770509
url http://hdl.handle.net/20.500.12442/1586
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.eng.fl_str_mv Procedia Computer Science
dc.source.spa.fl_str_mv Vol. 108 (2017)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv doi.org/10.1016/j.procs.2017.05.062
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/558d7a94-2414-42d4-8b39-61575b9630e0/download
https://bonga.unisimon.edu.co/bitstreams/b89e1816-b7d0-4c01-ae18-dbd1abed59a4/download
https://bonga.unisimon.edu.co/bitstreams/014e813d-93c0-4671-9c95-c4890e184881/download
https://bonga.unisimon.edu.co/bitstreams/04a26107-54f1-4f2f-93ee-babfeae15460/download
https://bonga.unisimon.edu.co/bitstreams/9add0106-3fb4-4438-b9d4-b885e6db9cc9/download
https://bonga.unisimon.edu.co/bitstreams/5a5ba9ba-9987-4238-be1a-68d253a4f7f9/download
bitstream.checksum.fl_str_mv 6561e1ba511fcca1033aa93dabc4b804
8a4605be74aa9ea9d79846c1fba20a33
dd85a5d2a369e2c9dbf4ae79ec3849ee
dfe3be602308b0f25781a3dbe1268425
7a1a6ef2e6d742f23ec1f75fcc127762
3d9e4330d8b88989ea93d0bf966e09a1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076125666607104
spelling licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Nino-Ruiz, Elias D.27b6f0ec-390b-4ca3-87db-d8aa9475fdc6-1Mancilla, Alfonso9e11f9cf-f7a6-43b5-bd5e-c63acbf20f66-1Calabria, Juan C.85b3bdad-cacd-44ee-9543-d9619a063ea6-12018-02-05T15:33:52Z2018-02-05T15:33:52Z2017-06-1218770509http://hdl.handle.net/20.500.12442/1586In this paper, we propose a posterior ensemble Kalman filter (EnKF) based on a modified Cholesky decomposition. The main idea behind our approach is to estimate the moments of the analysis distribution based on an ensemble of model realizations. The method proceeds as follows: initially, an estimate of the precision background error covariance matrix is computed via a modified Cholesky decomposition and then, based on rank-one updates, the Cholesky factors of the inverse background error covariance matrix are updated in order to obtain an estimate of the inverse analysis covariance matrix. The special structure of the Cholesky factors can be exploited in order to obtain a matrix-free implementation of the EnKF. Once the analysis covariance matrix is estimated, the posterior mode of the distribution can be approximated and samples about it are taken in order to build the posterior ensemble. Experimental tests are performed making use of the Lorenz 96 model in order to assess the accuracy of the proposed implementation. The results reveal that, the accuracy of the proposed implementation is similar to that of the well-known local ensemble transform Kalman filter and even more, the use of our estimator reduces the impact of sampling errors during the assimilation of observations.engElsevierProcedia Computer ScienceVol. 108 (2017)doi.org/10.1016/j.procs.2017.05.062Ensemble Kalman FilterPosterior EnsembleModified Cholesky DecompositionA Posterior Ensemble Kalman Filter Based On A Modified Cholesky Decompositionarticlehttp://purl.org/coar/resource_type/c_6501Geir Evensen. The Ensemble Kalman Filter: Theoretical Formulation and Practical Implementation. Ocean Dynamics, 53(4):343–367, 2003.Geir Evensen. Data Assimilation: The Ensemble Kalman Filter. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.Milija Zupanski. Theoretical and Practical Issues of Ensemble Data Assimilation in Weather and Climate. In SeonK. Park and Liang Xu, editors, Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, pages 67–84. Springer Berlin Heidelberg, 2009.S. Gillijns, O.B. Mendoza, J. Chandrasekar, B. L R De Moor, D.S. Bernstein, and A Ridley. What is the Ensemble Kalman Filter and How Well Does It Work? In American Control Conference, 2006, pages 6 pp.–, June 2006.Poterjoy Jonathan, Zhang Fuqing, and Yonghui Weng. The Effects of Sampling Errors on the EnKF Assimilation of InnerCore Hurricane Observations. Monthly Weather Review, 142(4):1609– 1630, 2014.Jeffrey L. Anderson. Localization and Sampling Error Correction in Ensemble Kalman Filter Data Assimilation. Monthly Weather Review, 140(7):2359–2371, 2012.Christian L. Keppenne. Data Assimilation into a PrimitiveEquation Model with a Parallel Ensemble Kalman Filter. Monthly Weather Review, 128(6):1971–1981, 2000.Michael K. Tippett, Jeffrey L. Anderson, Craig H. Bishop, Thomas M. Hamill, and Jeffrey S. Whitaker. Ensemble square root filters. Monthly Weather Review, 131(7):1485–1490, Jul 2003.EliasD. Nino Ruiz, Adrian Sandu, and Jeffrey Anderson. An Efficient Implementation of the Ensemble Kalman Filter Based on an Iterative Sherman–Morrison Formula. Statistics and Computing, pages 1–17, 2014.Peter J. Bickel and Elizaveta Levina. Regularized estimation of large covariance matrices. Ann. Statist., 36(1):199–227, 02 2008.Hong Li, Eugenia Kalnay, and Takemasa Miyoshi. Simultaneous estimation of covariance inflation and observation errors within an ensemble kalman filter. Quarterly Journal of the Royal Meteorological Society, 135(639):523–533, 2009.Jeffrey L Anderson. An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus A, 59(2):210–224, 2007.P. F. J. Lermusiaux. Adaptive modeling, adaptive data assimilation and adaptive sampling. Physica D Nonlinear Phenomena, 230:172–196, June 2007.Ahmed H. Elsheikh, Mary F. Wheeler, and Ibrahim Hoteit. An iterative stochastic ensemble method for parameter estimation of subsurface flow models. Journal of Computational Physics, 242:696 – 714, 2013.Craig H. Bishop and Zoltan Toth. Ensemble Transformation and Adaptive Observations. Journal of the Atmospheric Sciences, 56(11):1748–1765, 1999.Edward Ott, Brian R. Hunt, Istvan Szunyogh, Aleksey V. Zimin, Eric J. Kostelich, Matteo Corazza, Eugenia Kalnay, D. J. Patil, and James A. Yorke. A local ensemble kalman filter for atmospheric data assimilation. Tellus A, 56(5):415–428, 2004.Edward Ott, Brian Hunt, Istvan Szunyogh, Aleksey V Zimin, Eic J. Kostelich, Matteo Corazza, Eugenia Kalnay, D. J. Patil, and James A. Yorke. A Local Ensemble Transform Kalman Filter Data Assimilation System for the NCEP Global Model. Tellus A, 60(1):113–130, 2008.Elias D NinoRuiz, Adrian Sandu, and Xinwei Deng. A parallel ensemble kalman filter implementation based on modified cholesky decomposition. In Proceedings of the 6th Workshop on Latest Advances in Scalable Algorithms for Large-Scale Systems, page 4. ACM, 2015.Peter J Bickel and Elizaveta Levina. Covariance regularization by thresholding. The Annals of Statistics, pages 2577–2604, 2008.Jan Mandel and Jonathan D Beezley. Predictor-corrector and morphing ensemble filters for the assimilation of sparse data into high-dimensional nonlinear systems. University of Colorado at Denver and Health Sciences Center, Center for Computational Mathematics, 2006.Ibrahim Fatkullin and Eric VandenEijnden. A computational strategy for multiscale systems with applications to lorenz 96 model. Journal of Computational Physics, 200(2):605–638, 2004.Elana J Fertig, John Harlim, and Brian R Hunt. A comparative study of 4dvar and a 4d ensemble kalman filter: Perfect model simulations with lorenz96. Tellus A, 59(1):96–100, 2007.David R. Bickel and Marta Padilla. A Priorfree Framework of Coherent Inference and Its Derivation of Simple Shrinkage Estimators. Journal of Statistical Planning and Inference, 145(0):204–221, 2014.ORIGINALPDF.pdfPDF.pdfFormato Pdf texto completoapplication/pdf2262614https://bonga.unisimon.edu.co/bitstreams/558d7a94-2414-42d4-8b39-61575b9630e0/download6561e1ba511fcca1033aa93dabc4b804MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bonga.unisimon.edu.co/bitstreams/b89e1816-b7d0-4c01-ae18-dbd1abed59a4/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTA posterior ensemble Kalman filter based on a modified Cholesky Decomposition.pdf.txtA posterior ensemble Kalman filter based on a modified Cholesky Decomposition.pdf.txtExtracted texttext/plain48751https://bonga.unisimon.edu.co/bitstreams/014e813d-93c0-4671-9c95-c4890e184881/downloaddd85a5d2a369e2c9dbf4ae79ec3849eeMD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain50158https://bonga.unisimon.edu.co/bitstreams/04a26107-54f1-4f2f-93ee-babfeae15460/downloaddfe3be602308b0f25781a3dbe1268425MD55THUMBNAILA posterior ensemble Kalman filter based on a modified Cholesky Decomposition.pdf.jpgA posterior ensemble Kalman filter based on a modified Cholesky Decomposition.pdf.jpgGenerated Thumbnailimage/jpeg1715https://bonga.unisimon.edu.co/bitstreams/9add0106-3fb4-4438-b9d4-b885e6db9cc9/download7a1a6ef2e6d742f23ec1f75fcc127762MD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5304https://bonga.unisimon.edu.co/bitstreams/5a5ba9ba-9987-4238-be1a-68d253a4f7f9/download3d9e4330d8b88989ea93d0bf966e09a1MD5620.500.12442/1586oai:bonga.unisimon.edu.co:20.500.12442/15862024-07-25 03:25:23.592open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=