A mho type phase comparator relay guideline using phase comparison technique for a power system

This paper presents a mho distance relay simulation based on the phase comparison technique using a typical electrical power systems analysis software for two cases: when the operation state is close to the static voltage limit and during a dynamic perturbation in the system. The paper evaluates the...

Full description

Autores:
González-Cueto Cruz, José Antonio
García Sánchez, Zaid
Crespo Sánchez, Gustavo
Hernández Herrera, Hernán
Silva-Ortega, Jorge Iván
Martínez Díaz, Vicente Leonel
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/6851
Acceso en línea:
https://hdl.handle.net/20.500.12442/6851
http://ijece.iaescore.com/index.php/IJECE/article/view/21406/14616
Palabra clave:
Distance relays
Electric power network analysis
Mid-term stability
Mho phase comparator
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_acb717cf24a0296d6eaffbf875ab350d
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/6851
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv A mho type phase comparator relay guideline using phase comparison technique for a power system
title A mho type phase comparator relay guideline using phase comparison technique for a power system
spellingShingle A mho type phase comparator relay guideline using phase comparison technique for a power system
Distance relays
Electric power network analysis
Mid-term stability
Mho phase comparator
title_short A mho type phase comparator relay guideline using phase comparison technique for a power system
title_full A mho type phase comparator relay guideline using phase comparison technique for a power system
title_fullStr A mho type phase comparator relay guideline using phase comparison technique for a power system
title_full_unstemmed A mho type phase comparator relay guideline using phase comparison technique for a power system
title_sort A mho type phase comparator relay guideline using phase comparison technique for a power system
dc.creator.fl_str_mv González-Cueto Cruz, José Antonio
García Sánchez, Zaid
Crespo Sánchez, Gustavo
Hernández Herrera, Hernán
Silva-Ortega, Jorge Iván
Martínez Díaz, Vicente Leonel
dc.contributor.author.none.fl_str_mv González-Cueto Cruz, José Antonio
García Sánchez, Zaid
Crespo Sánchez, Gustavo
Hernández Herrera, Hernán
Silva-Ortega, Jorge Iván
Martínez Díaz, Vicente Leonel
dc.subject.eng.fl_str_mv Distance relays
Electric power network analysis
Mid-term stability
Mho phase comparator
topic Distance relays
Electric power network analysis
Mid-term stability
Mho phase comparator
description This paper presents a mho distance relay simulation based on the phase comparison technique using a typical electrical power systems analysis software for two cases: when the operation state is close to the static voltage limit and during a dynamic perturbation in the system. The paper evaluates the impedance variations caused by complex voltage values, the mho polarization, and the comparator operating region into the complex plane. In addition, the paper found the information for the dynamic perturbations from the outputs considering a mid-term stability program. The simulation of the mho-phase comparator in the static voltage proximity limit detects unit distance elements with impedance measured close to reach the threshold in the steady-state. Dynamic mho simulations in the complex plane are successfully tested by plotting time phase difference curves on the comparator input signals. Relay programmers can use these curves to analyze other phase comparators applications and the corresponding models in the complex plane.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-12-08T12:52:26Z
dc.date.available.none.fl_str_mv 2020-12-08T12:52:26Z
dc.date.issued.none.fl_str_mv 2021
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.issn.none.fl_str_mv 27222578
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/6851
dc.identifier.doi.none.fl_str_mv 10.11591/ijece.v11i2.pp929-944
dc.identifier.url.none.fl_str_mv http://ijece.iaescore.com/index.php/IJECE/article/view/21406/14616
identifier_str_mv 27222578
10.11591/ijece.v11i2.pp929-944
url https://hdl.handle.net/20.500.12442/6851
http://ijece.iaescore.com/index.php/IJECE/article/view/21406/14616
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.spa.fl_str_mv Institute of Advanced Engineering and Science (IAES)
dc.source.eng.fl_str_mv International Journal of Electrical and Computer Engineering (IJECE)
dc.source.none.fl_str_mv Vol. 11 N° 2, (2021)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/84be0bc8-0576-4ca6-95af-324c2a6ae52d/download
https://bonga.unisimon.edu.co/bitstreams/0015ed72-7ae7-4e16-bc7b-d7471f8c469e/download
https://bonga.unisimon.edu.co/bitstreams/f1aa1bef-1b77-4b85-ad59-c970608a6ae2/download
https://bonga.unisimon.edu.co/bitstreams/41ba1a80-7f60-401c-be62-06b0b1bf691c/download
https://bonga.unisimon.edu.co/bitstreams/27a06fed-c224-4067-a120-3db9357fbefa/download
https://bonga.unisimon.edu.co/bitstreams/651fe1f8-0f36-4821-aeca-8291ee068a82/download
https://bonga.unisimon.edu.co/bitstreams/2c5526b2-d88d-4f6d-a746-115950f030fa/download
bitstream.checksum.fl_str_mv e22ef53410e51dba1c2f4c6f5a13dda2
733bec43a0bf5ade4d97db708e29b185
4460e5956bc1d1639be9ae6146a50347
ea9dae847d9d25274bec5313e22b7cb1
7f67a1e24c42d9ac851c973534e53776
27b496aeb68b812dc25c5a1a31a995ab
b111ae4b6f4cbb003687c3f6553cd57b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100472965693440
spelling González-Cueto Cruz, José Antoniob78ecac2-a172-45db-868f-48137bad2b4aGarcía Sánchez, Zaid8bea18eb-d280-4373-a7eb-78c338c79785Crespo Sánchez, Gustavobccb9ce4-2c0a-49f9-bac6-61b95ff9d0f5Hernández Herrera, Hernán507622f1-58a6-4b12-a012-29228346688cSilva-Ortega, Jorge Iván371ea16c-961f-49b0-ad1e-5d25c7a1eccdMartínez Díaz, Vicente Leonel1324648e-407c-436d-99cd-727ac7c73ab02020-12-08T12:52:26Z2020-12-08T12:52:26Z202127222578https://hdl.handle.net/20.500.12442/685110.11591/ijece.v11i2.pp929-944http://ijece.iaescore.com/index.php/IJECE/article/view/21406/14616This paper presents a mho distance relay simulation based on the phase comparison technique using a typical electrical power systems analysis software for two cases: when the operation state is close to the static voltage limit and during a dynamic perturbation in the system. The paper evaluates the impedance variations caused by complex voltage values, the mho polarization, and the comparator operating region into the complex plane. In addition, the paper found the information for the dynamic perturbations from the outputs considering a mid-term stability program. The simulation of the mho-phase comparator in the static voltage proximity limit detects unit distance elements with impedance measured close to reach the threshold in the steady-state. Dynamic mho simulations in the complex plane are successfully tested by plotting time phase difference curves on the comparator input signals. Relay programmers can use these curves to analyze other phase comparators applications and the corresponding models in the complex plane.pdfengInstitute of Advanced Engineering and Science (IAES)Attribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Journal of Electrical and Computer Engineering (IJECE)Vol. 11 N° 2, (2021)Distance relaysElectric power network analysisMid-term stabilityMho phase comparatorA mho type phase comparator relay guideline using phase comparison technique for a power systeminfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1C. Da Costa, et al., “A Methodology for Distance Relay Modeling,” IEEE Latin America Transactions, vol. 16, no. 5, pp. 1388-1394, 2018.M. R. Barzegar, and A. Foroud, “Performance evaluation of distance relay in the presence of hybrid SFCL," IET Science Measurement and Technology, vol. 12, no. 5, pp. 581-593, 2018.W. D. Humpage and S. P. Sabberwal, “Developments in-phase-comparison techniques for distance protection,” Proceedings of the Institution of Electrical Engineers, vol. 112, no. 7, 1965, pp. 1383-1394.G. W. Stagg and A. H. El-Abiad, “Computer Methods in Power System Analysis,” New York: McGraw-Hill Book Company, 1968.L. Jackson, et al., “Distance protection: optimum dynamic design of static relay comparators,” Proceedings of the Institution of Electrical Engineers, vol. 115, no. 2, 1968, pp. 280-287.A. Manori, et al., “Advance compensated mho relay algorithm for a transmission system with shunt flexible AC transmission system device,” Electric Power Components and Systems, vol. 42, no. 16, pp. 1802-1810, 2014.G. T. Vuong and G. Paris, "Rule-based relay modeling for transient-stability studies," IEEE Transactions on Power Systems, vol. 3, no. 3, pp. 1306-1309, 1988L. P. Cavero, "Computer-aided evaluation and application of distance relays," 1993 Fifth International Conference on Developments in Power System Protection, York, UK, 1993, pp. 199-202.S. J. Zubić, et al., “Probabilistic assessment of new time-domain distance relay algorithms,” Electric Power Systems Research, vol. 119, pp. 218-227, 2015.Do, Dinh-Thuan, and Minh-Sang V. Nguyen, "Enabling relay selection in non-orthogonal multiple access networks: direct and relaying mode," TELKOMNIKA (Telecommunication, Computing, Electronics and Control), vol. 18, no. 2, pp. 587-594, 2020.V. Cook, "Generalised method of assessing polarising signals for the polarised mho relay," Proceedings of the Institution of Electrical Engineers, vol. 122, no. 5, 1975, pp. 497-500.A. B. Shah, et al., “Mho Relay for Protection of Series Compensated Line,” 2009 IEEE Toronto International Conference Science and Technology for Humanity (TIC-STH), Toronto, ON, 2009, pp. 648-651.Abd Almuhsen, Tahseen Ali, and Ahmed Jasim Sultan, "Coordination of directional overcurrent and distance relays based on nonlinear multivariable optimization," Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 17, no. 3, pp. 1194-1205, 2020.S. J. Zubić, and M. B. Djurić, “A distance relay algorithm based on the phase comparison principle,” Electric Power Systems Research, vol. 92, pp. 20-28, 2012.R. C. Dos Santos, and E. C. Senger, "Transmission lines distance protection using artificial neural networks," International Journal of Electrical Power and Energy Systems, vol. 33, no. 3, pp. 721-730, 2011.M. D. Zadeh, et al., “FPAA-based mho distance relay considering CVT transient supervision,” IET generation, transmission and distribution, vol. 3, no. 7, pp. 616-627, 2009.S. Raman, et al., “An adaptive fuzzy mho relay for phase backup protection with in feed from STATCOM,” IEEE Transactions on Power Delivery, vol. 28, no. 1, pp. 120-128, 2013.A. Ghorbani, et al., “Operation of synchronous generator LOE protection in the presence of shunt-FACTS,” Electric Power Systems Research, vol. 119, pp. 178-186, 2015.A. Manori, et al., "SVM based zonal setting of Mho relay for shunt compensated transmission line,” International Journal of Electrical Power and Energy Systems, vol. 78, pp. 422-428, 2016.L. T. Guajardo, and A. C. Enríquez, "Enhanced performance for distance relays due to series capacitors in transmission lines," Electric Power Systems Research, vol. 109, pp. 20-31, 2014.Guajardo, et al., "Error compensation in distance relays caused by wind power plants in the power grid," Electric Power Systems Research, vol. 106, pp. 109-119, 2014.H. J. Altuve, and E. O. Schweitzer, "Modern solutions for protection, control, and monitoring of electric power systems," Schweitzer Engineering Laboratories, 2010.J. Arrillaga, and N. R. Whatson, "Computer modelling of Electrical Power Systems," New York: John Wiley and Sons Ltd., Second Edition, 2001.P. Kundur, "Power System Stability and Control," New York: Mc Graw Hill, Inc., 1993.V. Ajjarapu, and C. Christy, “The continuation power flow: A tool for steady state voltage stability analysis,” IEEE Transactions on Power Systems, vol. 7, no. 1, pp. 416-423, 1992.Z. Garcia, et al., “Voltage collapse point evaluation considering the load dependence in a power system stability problem,” International Journal of Electrical and Computer Engineering (IJECE), vol. 10, no. 1, pp. 61-71, 2020.C. Cañizares, "Voltage stability assessment, procedures and guides," IEEE/PES Power System Stability Subcommittee, Special Publication, 2001.E. G. Gate, et al., “Time frame notion and time response of the methods in transient, mid-term and long-term stability programs,” IEEE Transactions on Power Apparatus and Systems, vol. 103, no. 1, pp. 143-151, 1984.L. Wang, and E. Price, “New High-speed Microprocessor Distance Relaying for Transmission Lines,” POWERCON '98. 1998 International Conference on Power System Technology. Proceedings (Cat. No.98EX151), Beijing, China, vol. 2, 1998, pp. 1143-1147.H. J. Altuve, et al., "Simulación digital de relevadores analógicos de distancia a nivel de esquema de comparación,” Parte I X Reunión de Verano de Potencia del IEEE Sección México (RVP-97), Acapulco, Gro., México, 1997.H. J. Altuve, et al., "Simulación digital de relevadores analógicos de distancia a nivel de esquema de comparación,” Parte II: Programa Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, México, 1997.S. Zamora, "Flujo de carga N-R acoplado rápido con técnicas para orientar el análisis en caso de divergencia," Tesis de Master en Ciencias, UCLV, Santa Clara, 1999.Z. García Sánchez, "Metodología para estudios estáticos de la estabilidad de tension," Tesis de Doctorado en Ciencias Técnicas, UCLV, Santa Clara, Cuba, 2011.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf1073595https://bonga.unisimon.edu.co/bitstreams/84be0bc8-0576-4ca6-95af-324c2a6ae52d/downloade22ef53410e51dba1c2f4c6f5a13dda2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/0015ed72-7ae7-4e16-bc7b-d7471f8c469e/download733bec43a0bf5ade4d97db708e29b185MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/f1aa1bef-1b77-4b85-ad59-c970608a6ae2/download4460e5956bc1d1639be9ae6146a50347MD52TEXTAmhotypephasecomparatorelayguidelineusingphase.pdf.txtAmhotypephasecomparatorelayguidelineusingphase.pdf.txtExtracted texttext/plain44829https://bonga.unisimon.edu.co/bitstreams/41ba1a80-7f60-401c-be62-06b0b1bf691c/downloadea9dae847d9d25274bec5313e22b7cb1MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain45841https://bonga.unisimon.edu.co/bitstreams/27a06fed-c224-4067-a120-3db9357fbefa/download7f67a1e24c42d9ac851c973534e53776MD56THUMBNAILAmhotypephasecomparatorelayguidelineusingphase.pdf.jpgAmhotypephasecomparatorelayguidelineusingphase.pdf.jpgGenerated Thumbnailimage/jpeg1603https://bonga.unisimon.edu.co/bitstreams/651fe1f8-0f36-4821-aeca-8291ee068a82/download27b496aeb68b812dc25c5a1a31a995abMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5185https://bonga.unisimon.edu.co/bitstreams/2c5526b2-d88d-4f6d-a746-115950f030fa/downloadb111ae4b6f4cbb003687c3f6553cd57bMD5720.500.12442/6851oai:bonga.unisimon.edu.co:20.500.12442/68512024-08-14 21:52:21.91http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u