Implementation of a Piezo-diagnostics Approach for Damage Detection Based on PCA in a Linux-Based Embedded Platform

The implementation of damage-detection methods for continuously assessing structural integrity entails systems with attractive features such as storage capabilities, memory capacity, computational complexity and time-consuming processing. In this sense, embedded hardware platforms are a promising te...

Full description

Autores:
Camacho, Jhonatan
Quintero, Andrés
Ruiz, Magda
Villamizar, Rodolfo
Mujica, Luis
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/2347
Acceso en línea:
http://hdl.handle.net/20.500.12442/2347
Palabra clave:
Principal component analysis
Embedded system
Online monitoring
Structural health monitoring
Guided waves
Pipeline damage detection
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_aaf74ff8050dbf68ee52e94204ccb005
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/2347
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Implementation of a Piezo-diagnostics Approach for Damage Detection Based on PCA in a Linux-Based Embedded Platform
title Implementation of a Piezo-diagnostics Approach for Damage Detection Based on PCA in a Linux-Based Embedded Platform
spellingShingle Implementation of a Piezo-diagnostics Approach for Damage Detection Based on PCA in a Linux-Based Embedded Platform
Principal component analysis
Embedded system
Online monitoring
Structural health monitoring
Guided waves
Pipeline damage detection
title_short Implementation of a Piezo-diagnostics Approach for Damage Detection Based on PCA in a Linux-Based Embedded Platform
title_full Implementation of a Piezo-diagnostics Approach for Damage Detection Based on PCA in a Linux-Based Embedded Platform
title_fullStr Implementation of a Piezo-diagnostics Approach for Damage Detection Based on PCA in a Linux-Based Embedded Platform
title_full_unstemmed Implementation of a Piezo-diagnostics Approach for Damage Detection Based on PCA in a Linux-Based Embedded Platform
title_sort Implementation of a Piezo-diagnostics Approach for Damage Detection Based on PCA in a Linux-Based Embedded Platform
dc.creator.fl_str_mv Camacho, Jhonatan
Quintero, Andrés
Ruiz, Magda
Villamizar, Rodolfo
Mujica, Luis
dc.contributor.author.none.fl_str_mv Camacho, Jhonatan
Quintero, Andrés
Ruiz, Magda
Villamizar, Rodolfo
Mujica, Luis
dc.subject.eng.fl_str_mv Principal component analysis
Embedded system
Online monitoring
Structural health monitoring
Guided waves
Pipeline damage detection
topic Principal component analysis
Embedded system
Online monitoring
Structural health monitoring
Guided waves
Pipeline damage detection
description The implementation of damage-detection methods for continuously assessing structural integrity entails systems with attractive features such as storage capabilities, memory capacity, computational complexity and time-consuming processing. In this sense, embedded hardware platforms are a promising technology for developing integrated solutions in Structural Health Monitoring. In this paper, design, test, and specifications for a standalone inspection prototype are presented, which take advantage of piezo-diagnostics principle, statistical processing via Principal Component Analysis (PCA) and embedded systems. The equipment corresponds to a piezoelectric active system with the capability to detect defects in structures, by using a PCA-based algorithm embedded in the Odroid-U3 ARM Linux platform. The operation of the equipment consists of applying, at one side of the structure, wide guided waves by means of piezoelectric devices operated in actuation mode and to record the wave response in another side of the structure by using the same kind of piezoelectric devices operated in sensor mode. Based on the nominal response of the guide wave (no damages), represented by means of a PCA statistical model, the system can detect damages between the actuated/sensed points through squared prediction error (Q-statistical index). The system performance was evaluated in a pipe test bench where two kinds of damages were studied: first, a mass is added to the pipe surface, and then leaks are provoked to the pipe structure by means of a drill tool. The experiments were conducted on two lab structures: (i) a meter carbon-steel pipe section and (ii) a pipe loop structure. The wave response was recorded between the instrumented points for two conditions: (i) The pipe in nominal conditions, where several repetitions will be applied to build the nominal statistical model and (ii) when damage is caused to the pipe (mass adding or leak). Damage conditions were graphically recognized through the Q-statistic chart. Thus, the feasibility to implement an automated real-time diagnostic system is demonstrated with minimum processing resources and hardware flexibility.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-13T19:21:35Z
dc.date.available.none.fl_str_mv 2018-11-13T19:21:35Z
dc.date.issued.none.fl_str_mv 2018-11
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 14248220
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/2347
identifier_str_mv 14248220
url http://hdl.handle.net/20.500.12442/2347
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv MDPI
dc.source.eng.fl_str_mv Sensors
dc.source.spa.fl_str_mv Vol. 18, No.11 (2018)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv https://doi.org/10.3390/s18113730
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/ae873785-8310-4220-9cc3-c1b65fc4f8cb/download
https://bonga.unisimon.edu.co/bitstreams/79d1e66a-a6ff-4adb-b116-6a09660e8706/download
https://bonga.unisimon.edu.co/bitstreams/e7145b03-012c-4633-a8ea-80c2fe7679cb/download
https://bonga.unisimon.edu.co/bitstreams/f733ffd5-aa5a-49d9-aac7-9f6ccd9e741e/download
https://bonga.unisimon.edu.co/bitstreams/09aa2a5a-0a86-49fd-a778-3942f6d5d460/download
https://bonga.unisimon.edu.co/bitstreams/dc69bd5b-862b-427a-a1f0-8f3394df6486/download
bitstream.checksum.fl_str_mv cdc6f21b93df3bc36467528159c41d1f
3fdc7b41651299350522650338f5754d
6462193ad85e8694683b69b4331b7fea
865265bb9751ec462a5895cfc57ed461
42db3c81e13a0ec148c5b8177eb24268
423b0fdc2c5fc44039d7f8d90aefcb00
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100501174484992
spelling Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Camacho, Jhonatancbc3e73f-866e-4228-a538-5e38c7215da9-1Quintero, Andrés576308a3-1b2a-4140-8765-dbe2e210cd06-1Ruiz, Magdae90f9048-51a3-4e76-b933-29fe68e1c2db-1Villamizar, Rodolfob8106d5b-0491-403a-896a-56c51d25d6f0-1Mujica, Luis127d3374-e60a-4b0b-9c4f-e0eea85b25d7-12018-11-13T19:21:35Z2018-11-13T19:21:35Z2018-1114248220http://hdl.handle.net/20.500.12442/2347The implementation of damage-detection methods for continuously assessing structural integrity entails systems with attractive features such as storage capabilities, memory capacity, computational complexity and time-consuming processing. In this sense, embedded hardware platforms are a promising technology for developing integrated solutions in Structural Health Monitoring. In this paper, design, test, and specifications for a standalone inspection prototype are presented, which take advantage of piezo-diagnostics principle, statistical processing via Principal Component Analysis (PCA) and embedded systems. The equipment corresponds to a piezoelectric active system with the capability to detect defects in structures, by using a PCA-based algorithm embedded in the Odroid-U3 ARM Linux platform. The operation of the equipment consists of applying, at one side of the structure, wide guided waves by means of piezoelectric devices operated in actuation mode and to record the wave response in another side of the structure by using the same kind of piezoelectric devices operated in sensor mode. Based on the nominal response of the guide wave (no damages), represented by means of a PCA statistical model, the system can detect damages between the actuated/sensed points through squared prediction error (Q-statistical index). The system performance was evaluated in a pipe test bench where two kinds of damages were studied: first, a mass is added to the pipe surface, and then leaks are provoked to the pipe structure by means of a drill tool. The experiments were conducted on two lab structures: (i) a meter carbon-steel pipe section and (ii) a pipe loop structure. The wave response was recorded between the instrumented points for two conditions: (i) The pipe in nominal conditions, where several repetitions will be applied to build the nominal statistical model and (ii) when damage is caused to the pipe (mass adding or leak). Damage conditions were graphically recognized through the Q-statistic chart. Thus, the feasibility to implement an automated real-time diagnostic system is demonstrated with minimum processing resources and hardware flexibility.engMDPISensorsVol. 18, No.11 (2018)https://doi.org/10.3390/s18113730Principal component analysisEmbedded systemOnline monitoringStructural health monitoringGuided wavesPipeline damage detectionImplementation of a Piezo-diagnostics Approach for Damage Detection Based on PCA in a Linux-Based Embedded Platformarticlehttp://purl.org/coar/resource_type/c_6501Malinowski, P.; Wandowski, T.; Ostachowicz, W.; Luba, T.; Borowik, G.; Rawski, M.; Tomaszewski, P. Signal processing system for guided wave-based SHM technique. In Proceedings of the 9th InternationalWorkshop on Structural Health Monitoring (IWSHM), Stanford, CA, USA, 10–12 September 2013; pp. 964–971.Hong, M.;Wang, Q.; Su, Z.; Zhou, L. Real-time signal processing of guided waves acquired on high-speed trains for health monitoring of bogie systems. In Recent Advances in Structural Integrity Analysis—Proceedings of the International Congress (APCF/SIF-2014):(APCFS/SIF 2014);Woodhead Publishing: Sawston, UK, 2015; p. 188.Nguyen, T.; Chan, T.H.; Thambiratnam, D.P.; King, L. Development of a cost-effective and flexible vibration DAQ system for long-term continuous structural health monitoring. Mech. Syst. Signal Process. 2015, 64, 313–324.Yan, S.;Wu, J.; Sun,W.; Ma, H.; Yan, H. Development and application of structural health monitoring system based on piezoelectric sensors. Int. J. Distrib. Sens. Netw. 2013, 9, 270927.Liu, L.; Yuan, F. Active damage localization for plate-like structures using wireless sensors and a distributed algorithm. Smart Mater. Struct. 2008, 17, 055022.Product Overview—Acellent Technologies. Available online: https://www.acellent.com/products/ overview (accessed on 23 September 2018).Vibration Monitoring with Digitexx Accelerometers. Available online: http://www.digitexx.com/uni-triaxial- accelerometers (accessed on 23 September 2018).Mandache, C.; Genest, M.; Khan, M.; Mrad, N. Considerations on structural health monitoring reliability. In Proceedings of the International Workshop Smart Materials, Structures & NDT in Aerospace, Montreal, QC, Canada, 2–4 November 2011; Volume 24.Mitra, M.; Gopalakrishnan, S. Guided wave-based structural health monitoring: A review. Smart Mater. Struct. 2016, 25, 053001.Gaudenzi, P.; Nardi, D.; Chiapetta, I.; Atek, S.; Lampani, L.; Sarasini, F.; Tirillò, J.; Valente, T. Impact damage detection in composite laminate plates using an integrated piezoelectric sensor and actuator couple combined with wavelet -based features extraction approach. In Proceedings of the 7th ECCOMAS Thematic Conference on Smart Structures and Materials, Azores, Portugal, 3–6 June 2015.Spiegel, M.D. Damage Detection in Composite Materials Using PZT Actuators And Sensors for Structural Health Monitoring. Ph.D. Thesis, University of Alabama Libraries, Tuscaloosa, AZ, USA, 2014.Wang, T.; Yang, C.; Ye, L.; Spray, D.; Xiang, Y. Evaluation of guided wave propagation in steel pipes. In Recent Advances in Structural Integrity Analysis—Proceedings of the International Congress (APCF/SIF-2014); Woodhead Publishing: Sawston, UK, 2015; p. 255.Kolbadi Nejad, M.; Selk Ghafari, A.; Zabihollah, A. Fault Detection in a Cracked Pipeline Embedded with Piezoelectric Sensors/Actuators Employing Bond Graph Approach. Adv. Mater. Res. 2012, 476, 1015–1019.Karamizadeh, S.; Abdullah, S.M.; Manaf, A.A.; Zamani, M.; Hooman, A. An overview of principal component analysis. J. Signal Inf. Process. 2013, 4, 173.Liu, C.; Harley, J.B.; Bergés, M.; Greve, D.W.; Oppenheim, I.J. Robust ultrasonic damage detection under complex environmental conditions using singular value decomposition. Ultrasonics 2015, 58, 75–86.Trendafilova, I.; Cartmell, M.P.; Ostachowicz, W. Vibration-based damage detection in an aircraft wing scaled model using principal component analysis and pattern recognition. J. Sound Vib. 2008, 313, 560–566.Mujica, L.E.; Vehí, J.; Ruiz, M.; Verleysen, M.; Staszewski, W.; Worden, K. Multivariate statistics process control for dimensionality reduction in structural assessment. Mech. Syst. Signal Process. 2008, 22, 155–171.Mujica, L.; Rodellar, J.; Fernandez, A.; Güemes, A. Q-statistic and T2-statistic PCA-based measures for damage assessment in structures. Struct. Health Monit. 2011, 10, 539–553.Tibaduiza, D.; Mujica, L.; Rodellar, J. Comparison of several methods for damage localization using indices and contributions based on PCA. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2011; Volume 305, p. 012013.Camacho, J.; Ruiz, M.; Villamizar, R.; Mujica, L.; Martínez, F. Damage detection in structures using robust baseline models. In Proceedings of the 7th ECCOMAS Thematic Conference on Smart Structures and Materials (SMART2015), Ponta Delgada, Portugal, 3–6 June 2015; pp. 3–6.Permasense—Experts in Remote Monitoring Solutions. Available online: https://www.permasense.com/ (accessed on 23 September 2018).Ruiz Ordóñez, M.L. Multivariate Statistical Process Control and Case-Based Reasoning for Situation Assessment of Sequencing Batch Reactors; Universitat de Girona: Girona, Spain, 2008.Tibaduiza Burgos, D.A.; Mujica Delgado, L.E.; Güemes Gordo, A.; Rodellar Benedé, J. Active piezoelectric system using PCA. In Proceedings of the Fifth European Workshop on Structural Health Monitoring, Naples, Italy, 28 June–4 July 2010; pp. 164–169.Quiroga, J.; Mujica Delgado, L.E.; Villamizar Mejía, R.; Ruiz Ordóñez, M.; Camacho-Navarro, J. Signal-based bending stress monitoring using guided waves in hollow cylinders. In Proceedings of the SMART 2017: ECCOMAS Thematic Conference on Smart Structures and Materials, Madrid, Espanya, 5–8 June 2017; Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE): Barcelona, Spain, 2017; pp. 1390–1397.Quiroga, J.; Mujica, L.; Villamizar, R.; Ruiz, M.; Camacho, J. PCA-based stress monitoring of cylindrical specimens using PZTs and guided waves. Sensors 2017, 17, 2788.An, Y.K.; Kim, M.; Sohn, H. Piezoelectric transducers for assessing and monitoring civil infrastructures. In Sensor Technologies for Civil Infrastructures; Elsevier: Amsterdam, The Netherlands, 2014; pp. 86–120.Quiroga, J.L.; Quiroga, J.E.; Villamizar, R. Influence of the Coupling Layer on Low Frequency Ultrasonic Propagation in a PCA Based Stress Monitoring. In Proceedings of the 6th Panamerican Conference for NDT, Cartagena, Colombia, 12–14 August 2015; pp. 12–14.Connecting Electrical Leads. Available online: https://www.americanpiezo.com/images/stories/content_ images/pdf/connecting_electrical_leads.pdf (accessed on 23 September 2018).Jolliffe, I. Principal component analysis. In International Encyclopedia Of Statistical Science; Springer: Berlin, Germany, 2011; pp. 1094–1096.Liang, Y.; Lee, H.; Lim, S.; Lin, W.; Lee, K.; Wu, C. Proper orthogonal decomposition and its applications Part I: Theory. J. Sound Vib. 2002, 252, 527–544.Risvik, H. Principal Component Analysis (PCA) & NIPALS Algorithm. 2007. Available online: https: //folk.uio.no/henninri/pca_module/pca_nipals.pdf (accessed on 1 November 2018).Torres-Arredondo, M.A.; Buethe, I.; Tibaduiza, D.A.; Rodellar, J.; Fritzen, C.P. Damage detection and classification in pipework using acousto-ultrasonics and non-linear data-driven modelling. J. Civ. Struct. Health Monit. 2013, 3, 297–306.Mujica Delgado, L.E.; Vehi, J.; Rodellar, J.; Kolakowski, P. A Hybrid Approach of Knowledge-Based Reasoning for Structural Assessment; Universitat de Girona: Girona, Spain, 2006.Karki, J. Signal conditioning piezoelectric sensors. Application Report on Mixed Signal Products (SLOA033A); Texas Instruments: Dallas, TX, USA, 2000.USB Oscilloscopes & Mixed Signal Oscilloscopes. Available online: https://www.picotech.com/ oscilloscope/2000/picoscope-2000-overview (accessed on 23 September 2018).Camacho-Navarro, J.; Ruiz Ordóñez, M.; Villamizar Mejía, R.; Mujica Delgado, L.E.; Pérez, O. Evaluation of piezo-diagnosticsdiagnostics approach for leaks detection in a pipe loop. Key Eng. Mater. 2016, 713, 107–110.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf1830182https://bonga.unisimon.edu.co/bitstreams/ae873785-8310-4220-9cc3-c1b65fc4f8cb/downloadcdc6f21b93df3bc36467528159c41d1fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/79d1e66a-a6ff-4adb-b116-6a09660e8706/download3fdc7b41651299350522650338f5754dMD52TEXTImplementation of a Piezo-diagnostics Approach for.pdf.txtImplementation of a Piezo-diagnostics Approach for.pdf.txtExtracted texttext/plain43574https://bonga.unisimon.edu.co/bitstreams/e7145b03-012c-4633-a8ea-80c2fe7679cb/download6462193ad85e8694683b69b4331b7feaMD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain46025https://bonga.unisimon.edu.co/bitstreams/f733ffd5-aa5a-49d9-aac7-9f6ccd9e741e/download865265bb9751ec462a5895cfc57ed461MD55THUMBNAILImplementation of a Piezo-diagnostics Approach for.pdf.jpgImplementation of a Piezo-diagnostics Approach for.pdf.jpgGenerated Thumbnailimage/jpeg1614https://bonga.unisimon.edu.co/bitstreams/09aa2a5a-0a86-49fd-a778-3942f6d5d460/download42db3c81e13a0ec148c5b8177eb24268MD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5360https://bonga.unisimon.edu.co/bitstreams/dc69bd5b-862b-427a-a1f0-8f3394df6486/download423b0fdc2c5fc44039d7f8d90aefcb00MD5620.500.12442/2347oai:bonga.unisimon.edu.co:20.500.12442/23472024-07-26 03:08:38.234open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=