Advanced Glycation End Products: New Clinical and Molecular Perspectives

Diabetes mellitus (DM) is considered one of the most massive epidemics of the twenty-first century due to its high mortality rates caused mainly due to its complications; therefore, the early identification of such complications becomes a race against time to establish a prompt diagnosis. The resear...

Full description

Autores:
Salazar, Juan
Navarro, Carla
Ortega, Ángel
Nava, Manuel
Morillo, Daniela
Torres, Wheeler
Hernández, Marlon
Cabrera, Mayela
Angarita, Lissé
Ortiz, Rina
Chacín, Maricarmen
D'Marco, Luis
Bermúdez, Valmore
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/8360
Acceso en línea:
https://hdl.handle.net/20.500.12442/8360
https://doi.org/10.3390/ijerph18147236
Palabra clave:
advanced glycation end products
diabetes mellitus
chronic complications
skin fluorescence
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_aac09cbb37add8638670b42e74a3b627
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/8360
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Advanced Glycation End Products: New Clinical and Molecular Perspectives
title Advanced Glycation End Products: New Clinical and Molecular Perspectives
spellingShingle Advanced Glycation End Products: New Clinical and Molecular Perspectives
advanced glycation end products
diabetes mellitus
chronic complications
skin fluorescence
title_short Advanced Glycation End Products: New Clinical and Molecular Perspectives
title_full Advanced Glycation End Products: New Clinical and Molecular Perspectives
title_fullStr Advanced Glycation End Products: New Clinical and Molecular Perspectives
title_full_unstemmed Advanced Glycation End Products: New Clinical and Molecular Perspectives
title_sort Advanced Glycation End Products: New Clinical and Molecular Perspectives
dc.creator.fl_str_mv Salazar, Juan
Navarro, Carla
Ortega, Ángel
Nava, Manuel
Morillo, Daniela
Torres, Wheeler
Hernández, Marlon
Cabrera, Mayela
Angarita, Lissé
Ortiz, Rina
Chacín, Maricarmen
D'Marco, Luis
Bermúdez, Valmore
dc.contributor.author.none.fl_str_mv Salazar, Juan
Navarro, Carla
Ortega, Ángel
Nava, Manuel
Morillo, Daniela
Torres, Wheeler
Hernández, Marlon
Cabrera, Mayela
Angarita, Lissé
Ortiz, Rina
Chacín, Maricarmen
D'Marco, Luis
Bermúdez, Valmore
dc.subject.eng.fl_str_mv advanced glycation end products
diabetes mellitus
chronic complications
skin fluorescence
topic advanced glycation end products
diabetes mellitus
chronic complications
skin fluorescence
description Diabetes mellitus (DM) is considered one of the most massive epidemics of the twenty-first century due to its high mortality rates caused mainly due to its complications; therefore, the early identification of such complications becomes a race against time to establish a prompt diagnosis. The research of complications of DM over the years has allowed the development of numerous alternatives for diagnosis. Among these emerge the quantification of advanced glycation end products (AGEs) given their increased levels due to chronic hyperglycemia, while also being related to the induction of different stress-associated cellular responses and proinflammatory mechanisms involved in the progression of chronic complications of DM. Additionally, the investigation for more valuable and safe techniques has led to developing a newer, noninvasive, and effective tool, termed skin fluorescence (SAF). Hence, this study aimed to establish an update about the molecular mechanisms induced by AGEs during the evolution of chronic complications of DM and describe the newer measurement techniques available, highlighting SAF as a possible tool to measure the risk of developing DM chronic complications.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-13T23:13:59Z
dc.date.available.none.fl_str_mv 2021-09-13T23:13:59Z
dc.date.issued.none.fl_str_mv 2021
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.issn.none.fl_str_mv 16604601
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/8360
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/ijerph18147236
identifier_str_mv 16604601
url https://hdl.handle.net/20.500.12442/8360
https://doi.org/10.3390/ijerph18147236
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.eng.fl_str_mv MDPI
dc.source.eng.fl_str_mv International Journal of Enviromental Research and Public Health
dc.source.none.fl_str_mv Vol. 18 N° 14 (2021)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/cc9e34f9-cb25-420e-a331-99f2e00f25b4/download
https://bonga.unisimon.edu.co/bitstreams/afc6c3d1-da2b-497e-b10c-4d3709047dc8/download
https://bonga.unisimon.edu.co/bitstreams/4e5c2bc2-7a0f-4420-8a21-0adff7c251f1/download
https://bonga.unisimon.edu.co/bitstreams/9ce1396f-31e1-440a-80b2-797e6a6efff7/download
https://bonga.unisimon.edu.co/bitstreams/33a67fc3-df54-41f0-ae5b-65b8f12b9c4f/download
https://bonga.unisimon.edu.co/bitstreams/a3e90461-bfa0-45a5-86cf-8a04974fc443/download
https://bonga.unisimon.edu.co/bitstreams/2e817a78-9a1c-4c04-96cb-a61c28d4bb98/download
bitstream.checksum.fl_str_mv 61fa8056086cf684e1b0b7158059570a
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
5f75f077b53454b87956e2ddc7090fa6
aeceb49a76e57876e403f3f80369f3a2
28843b1c380f34e244d9b2a5cb82b27d
8bce14fb97b59b277e69aa33ac67e3da
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076127497420800
spelling Salazar, Juanfbd053e7-5aea-424c-812f-92153ecb9181Navarro, Carla9892bf34-10a9-479a-8b3a-6769d4804207Ortega, Ángelb6a809bb-4d26-4e53-9419-e4eb9fb40a9bNava, Manuelcf0ca570-5fc3-4ec7-9913-90be952261e2Morillo, Daniela77703376-f18e-4e23-8a70-807d63f9f78aTorres, Wheelera82c8c05-2160-44dc-b397-ffc2ac51becaHernández, Marlonc706ac0a-7de4-41dc-8c44-9face12fbc6fCabrera, Mayelad08d7973-5581-4736-b7b4-4d47da8b412cAngarita, Lissécd37d36e-0d41-457f-9dc8-1ed5b9201b16Ortiz, Rinab50c3253-2c29-426f-b91b-165deb110151Chacín, Maricarmen5c3b3d7c-4444-47e2-b2be-11f08df10409D'Marco, Luis4f289143-892b-43a3-ac1f-6f462224f314Bermúdez, Valmore29f9aa18-16a4-4fd3-8ce5-ed94a0b8663a2021-09-13T23:13:59Z2021-09-13T23:13:59Z202116604601https://hdl.handle.net/20.500.12442/8360https://doi.org/10.3390/ijerph18147236Diabetes mellitus (DM) is considered one of the most massive epidemics of the twenty-first century due to its high mortality rates caused mainly due to its complications; therefore, the early identification of such complications becomes a race against time to establish a prompt diagnosis. The research of complications of DM over the years has allowed the development of numerous alternatives for diagnosis. Among these emerge the quantification of advanced glycation end products (AGEs) given their increased levels due to chronic hyperglycemia, while also being related to the induction of different stress-associated cellular responses and proinflammatory mechanisms involved in the progression of chronic complications of DM. Additionally, the investigation for more valuable and safe techniques has led to developing a newer, noninvasive, and effective tool, termed skin fluorescence (SAF). Hence, this study aimed to establish an update about the molecular mechanisms induced by AGEs during the evolution of chronic complications of DM and describe the newer measurement techniques available, highlighting SAF as a possible tool to measure the risk of developing DM chronic complications.pdfengMDPIAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International Journal of Enviromental Research and Public HealthVol. 18 N° 14 (2021)advanced glycation end productsdiabetes mellituschronic complicationsskin fluorescenceAdvanced Glycation End Products: New Clinical and Molecular Perspectivesinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Kerner, W.; Brückel, J. German Diabetes Association Definition, Classification and Diagnosis of Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes 2014, 122, 384–386.Zimmet, P.; Alberti, K.G.; Magliano, D.J.; Bennett, P.H. Diabetes Mellitus Statistics on Prevalence and Mortality: Facts and Fallacies. Nat. Rev. Endocrinol. 2016, 12, 616–622.International Diabetes Federation (IDF). IDF Diabetes Atlas, 7th ed.; International Diabetes Federation: Brussels, Belgium, 2015; Available online: https://www.desang.net/2017/11/idf-diabetes-atlas-7th-edition/ (accessed on 7 May 2021).Singh, V.P.; Bali, A.; Singh, N.; Jaggi, A.S. Advanced Glycation End Products and Diabetic Complications. Korean J. Physiol. Pharm. 2014, 18, 1–14.Butalia, S.; Patel, A.B.; Johnson, J.A.; Ghali, W.A.; Rabi, D.M. Geographic Clustering of Acute Complications and Sociodemographic Factors in Adults with Type 1 Diabetes. Can. J. Diabetes 2017, 41, 132–137.Elgart, J.F.; Caporale, J.E.; Asteazarán, S.; De La Fuente, J.L.; Camilluci, C.; Brown, J.B.; González, C.D.; Gagliardino, J.J. Association between Socioeconomic Status, Type 2 Diabetes and Its Chronic Complications in Argentina. Diabetes Res. Clin. Pract. 2014, 104, 241–247.Shi, Y.; Vanhoutte, P.M. Macro- and Microvascular Endothelial Dysfunction in Diabetes. J. Diabetes 2017, 9, 434–449.Loomis, S.J.; Chen, Y.; Sacks, D.B.; Christenson, E.S.; Christenson, R.H.; Rebholz, C.M.; Selvin, E. Cross-Sectional Analysis of AGE-CML, SRAGE, and EsRAGE with Diabetes and Cardiometabolic Risk Factors in a Community-Based Cohort. Clin. Chem. 2017, 63, 980–989.Vélayoudom-Céphise, F.-L.; Rajaobelina, K.; Helmer, C.; Nov, S.; Pupier, E.; Blanco, L.; Hugo, M.; Farges, B.; Astrugue, C.; Gin, H.; et al. Skin Autofluorescence Predicts Cardio-Renal Outcome in Type 1 Diabetes: A Longitudinal Study. Cardiovasc. Diabetol. 2016, 15, 127.Thomas, M.C.; Woodward, M.; Neal, B.; Li, Q.; Pickering, R.; Marre, M.; Williams, B.; Perkovic, V.; Cooper, M.E.; Zoungas, S.; et al. Relationship between Levels of Advanced Glycation End Products and Their Soluble Receptor and Adverse Outcomes in Adults with Type 2 Diabetes. Diabetes Care 2015, 38, 1891–1897.D’Alessandro, A.; Mirasole, C.; Zolla, L. Haemoglobin Glycation (Hb1Ac) Increases during Red Blood Cell Storage: A MALDI-TOF Mass-Spectrometry-Based Investigation. Vox Sang. 2013, 105, 177–180.Cho, Y.H.; Craig, M.E.; Januszewski, A.S.; Benitez-Aguirre, P.; Hing, S.; Jenkins, A.J.; Donaghue, K.C. Higher Skin Autofluorescence in Young People with Type 1 Diabetes and Microvascular Complications. Diabet. Med. 2017, 34, 543–550.Botros, N.; Sluik, D.; van Waateringe, R.P.; de Vries, J.H.M.; Geelen, A.; Feskens, E.J.M. Advanced Glycation End-Products (AGEs) and Associations with Cardio-Metabolic, Lifestyle, and Dietary Factors in a General Population: The NQplus Study. Diabetes Metab. Res. Rev. 2017, 33.Uribarri, J.; Woodruff, S.; Goodman, S.; Cai, W.; Chen, X.; Pyzik, R.; Yong, A.; Striker, G.E.; Vlassara, H. Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet. J. Am. Diet. Assoc. 2010, 110, 911–916.Mondaca-Navarro, B.A.; Ávila-Villa, L.A.; González-Córdova, A.F.; López-Cervantes, J.; Sánchez-Machado, D.I.; Campas-Baypoli, O.N.; Rodríguez-Ramírez, R. Antioxidant and Chelating Capacity of Maillard Reaction Products in Amino Acid-Sugar Model Systems: Applications for Food Processing. J. Sci. Food Agric. 2017, 97, 3522–3529.Brownlee, M.; Vlassara, H.; Cerami, A. Nonenzymatic Glycosylation and the Pathogenesis of Diabetic Complications. Ann. Intern. Med. 1984, 101, 527–537.Chu, F.L.; Yaylayan, V.A. Post-Schiff Base Chemistry of the Maillard Reaction: Mechanism of Imine Isomerization. Ann. N. Y. Acad. Sci. 2008, 1126, 30–37.Johnson, K.L.; Williams, J.G.; Maleki, S.J.; Hurlburt, B.K.; London, R.E.; Mueller, G.A. Enhanced Approaches for Identifying Amadori Products: Application to Peanut Allergens. J. Agric. Food Chem. 2016, 64, 1406–1413.Bucala, R.; Model, P.; Cerami, A. Modification of DNA by Reducing Sugars: A Possible Mechanism for Nucleic Acid Aging and Age-Related Dysfunction in Gene Expression. Proc. Natl. Acad. Sci. USA 1984, 81, 105–109.Ansari, N.A.; Moinuddin, null; Mir, A.R.; Habib, S.; Alam, K.; Ali, A.; Khan, R.H. Role of Early Glycation Amadori Products of Lysine-Rich Proteins in the Production of Autoantibodies in Diabetes Type 2 Patients. Cell Biochem. Biophys. 2014, 70, 857–865.Olar, L.; Razvan, Ștefan; Berce, C.; Ciobanu, D.; Papuc, I. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Vet. Med. 2015, 65, 358.Stirban, A.; Gawlowski, T.; Roden, M. Vascular Effects of Advanced Glycation Endproducts: Clinical Effects and Molecular Mechanisms. Mol. Metab. 2014, 3, 94–108.Macías-Cervantes, M.H.; Rodríguez-Soto, J.M.D.; Uribarri, J.; Díaz-Cisneros, F.J.; Cai, W.; Garay-Sevilla, M.E. Effect of an Advanced Glycation End Product-Restricted Diet and Exercise on Metabolic Parameters in Adult Overweight Men. Nutrition 2015, 31, 446–451.Uribarri, J.; Cai, W.; Ramdas, M.; Goodman, S.; Pyzik, R.; Chen, X.; Zhu, L.; Striker, G.E.; Vlassara, H. Restriction of Advanced Glycation End Products Improves Insulin Resistance in Human Type 2 Diabetes: Potential Role of AGER1 and SIRT1. Diabetes Care 2011, 34, 1610–1616.Angoorani, P.; Ejtahed, H.-S.; Mirmiran, P.; Mirzaei, S.; Azizi, F. Dietary Consumption of Advanced Glycation End Products and Risk of Metabolic Syndrome. Int. J. Food Sci. Nutr. 2016, 67, 170–176Saha, A.; Poojary, P.; Chan, L.; Chauhan, K.; Nadkarni, G.; DO, S.C.; Uribarri, J. Increased Odds of Metabolic Syndrome with Consumption of High Dietary Advanced Glycation End Products in Adolescents. Diabetes Metab. 2017, 43, 469–471.Lv, X.; Lv, G.-H.; Dai, G.-Y.; Sun, H.-M.; Xu, H.-Q. Food-Advanced Glycation End Products Aggravate the Diabetic Vascular Complications via Modulating the AGEs/RAGE Pathway. Chin. J. Nat. Med. 2016, 14, 844–855.Li, Z.; Wang, G.; Zhu, Y.-J.; Li, C.-G.; Tang, Y.-Z.; Jiang, Z.-H.; Yang, M.; Ni, C.-L.; Chen, L.-M.; Niu, W.-Y. The Relationship between Circulating Irisin Levels and Tissues AGE Accumulation in Type 2 Diabetes Patients. Biosci. Rep. 2017, 37.Chawla, D.; Bansal, S.; Banerjee, B.D.; Madhu, S.V.; Kalra, O.P.; Tripathi, A.K. Role of Advanced Glycation End Product (AGE)-Induced Receptor (RAGE) Expression in Diabetic Vascular Complications. Microvasc. Res. 2014, 95, 1–6.Xue, J.; Ray, R.; Singer, D.; Böhme, D.; Burz, D.S.; Rai, V.; Hoffmann, R.; Shekhtman, A. The Receptor for Advanced Glycation End Products (RAGE) Specifically Recognizes Methylglyoxal-Derived AGEs. Biochemistry 2014, 53, 3327–3335.Hofmann, M.A.; Drury, S.; Fu, C.; Qu, W.; Taguchi, A.; Lu, Y.; Avila, C.; Kambham, N.; Bierhaus, A.; Nawroth, P.; et al. RAGE Mediates a Novel Proinflammatory Axis: A Central Cell Surface Receptor for S100/Calgranulin Polypeptides. Cell 1999, 97, 889–901.Grimm, S.; Ott, C.; Hörlacher, M.; Weber, D.; Höhn, A.; Grune, T. Advanced-Glycation-End-Product-Induced Formation of Immunoproteasomes: Involvement of RAGE and Jak2/STAT1. Biochem. J. 2012, 448, 127–139.Gao, Z.Q.; Yang, C.; Wang, Y.Y.; Wang, P.; Chen, H.L.; Zhang, X.D.; Liu, R.; Li, W.L.; Qin, X.J.; Liang, X.; et al. RAGE Upregulation and Nuclear Factor-KappaB Activation Associated with Ageing Rat Cardiomyocyte Dysfunction. Gen. Physiol. Biophys. 2008, 27, 152–158.Gao, Z.Q.; Yang, C.; Wang, Y.Y.; Wang, P.; Chen, H.L.; Zhang, X.D.; Liu, R.; Li, W.L.; Qin, X.J.; Liang, X.; et al. RAGE Upregulation and Nuclear Factor-KappaB Activation Associated with Ageing Rat Cardiomyocyte Dysfunction. Gen. Physiol. Biophys. 2008, 27, 152–158.Ohashi, K.; Takahashi, H.K.; Mori, S.; Liu, K.; Wake, H.; Sadamori, H.; Matsuda, H.; Yagi, T.; Yoshino, T.; Nishibori, M.; et al. Advanced Glycation End Products Enhance Monocyte Activation during Human Mixed Lymphocyte Reaction. Clin. Immunol. 2010, 134, 345–353.Jin, X.; Yao, T.; Zhou, Z.; Zhu, J.; Zhang, S.; Hu, W.; Shen, C. Advanced Glycation End Products Enhance Macrophages Polarization into M1 Phenotype through Activating RAGE/NF-ΚB Pathway. Biomed. Res. Int. 2015, 2015, 732450.Jhun, J.; Lee, S.; Kim, H.; Her, Y.-M.; Byun, J.K.; Kim, E.-K.; Lee, S.K.; Cho, M.-L.; Choi, J.Y. HMGB1/RAGE Induces IL-17 Expression to Exaggerate Inflammation in Peripheral Blood Cells of Hepatitis B Patients. J. Transl. Med. 2015, 13.Bangert, A.; Andrassy, M.; Müller, A.-M.; Bockstahler, M.; Fischer, A.; Volz, C.H.; Leib, C.; Göser, S.; Korkmaz-Icöz, S.; Zittrich, S.; et al. Critical Role of RAGE and HMGB1 in Inflammatory Heart Disease. Proc. Natl. Acad. Sci. USA 2016, 113, E155–E164.Detzen, L.; Cheng, B.; Chen, C.-Y.; Papapanou, P.N.; Lalla, E. Soluble Forms of the Receptor for Advanced Glycation Endproducts (RAGE) in Periodontitis. Sci. Rep. 2019, 9, 8170.Egaña-Gorroño, L.; López-Díez, R.; Yepuri, G.; Ramirez, L.S.; Reverdatto, S.; Gugger, P.F.; Shekhtman, A.; Ramasamy, R.; Schmidt, A.M. Receptor for Advanced Glycation End Products (RAGE) and Mechanisms and Therapeutic Opportunities in Diabetes and Cardiovascular Disease: Insights From Human Subjects and Animal Models. Front. Cardiovasc. Med. 2020, 7, 37.Schmidt, A.M. Soluble RAGEs Prospects for Treating & Tracking Metabolic and Inflammatory Disease. Vasc. Pharm. 2015, 72, 1–8.Farhan, S.S.; Hussain, S.A. Advanced Glycation End Products (AGEs) and Their Soluble Receptors (SRAGE) as Early Predictors of Reno-Vascular Complications in Patients with Uncontrolled Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 2457–2461.Gerrits, E.G.; Lutgers, H.L.; Kleefstra, N.; Graaff, R.; Groenier, K.H.; Smit, A.J.; Gans, R.O.; Bilo, H.J. Skin Autofluorescence: A Tool to Identify Type 2 Diabetic Patients at Risk for Developing Microvascular Complications. Diabetes Care 2008, 31, 517–521.Sun, H.; Yuan, Y.; Sun, Z. Update on Mechanisms of Renal Tubule Injury Caused by Advanced Glycation End Products. Biomed. Res. Int. 2016, 2016, e5475120.Zong, H.; Ward, M.; Madden, A.; Yong, P.H.; Limb, G.A.; Curtis, T.M.; Stitt, A.W. Hyperglycaemia-Induced pro-Inflammatory Responses by Retinal Müller Glia Are Regulated by the Receptor for Advanced Glycation End-Products (RAGE). Diabetologia 2010, 53, 2656–2666.Sato, K.; Tatsunami, R.; Yama, K.; Tampo, Y. Glycolaldehyde Induces Cytotoxicity and Increases Glutathione and Multidrug-Resistance-Associated Protein Levels in Schwann Cells. Biol. Pharm. Bull. 2013, 36, 1111–1117.Lu, Z.; Liu, N.; Wang, F. Epigenetic Regulations in Diabetic Nephropathy. J. Diabetes Res. 2017, 2017.Espinel, E.; Agraz, I.; Ibernon, M.; Ramos, N.; Fort, J.; Serón, D. Renal Biopsy in Type 2 Diabetic Patients. J. Clin. Med. 2015, 4, 998.Chuang, P.Y.; Yu, Q.; Fang, W.; Uribarri, J.; He, J.C. Advanced Glycation Endproducts Induce Podocyte Apoptosis by Activation of the FOXO4 Transcription Factor. Kidney Int. 2007, 72, 965–976.Zhang, M.; Feng, L.; Zhu, M.; Gu, J.; Jiang, J.; Cheng, X.; Ding, S.; Wu, C.; Jia, X. The Anti-Inflammation Effect of Moutan Cortex on Advanced Glycation End Products-Induced Rat Mesangial Cells Dysfunction and High-Glucose-Fat Diet and Streptozotocin-Induced Diabetic Nephropathy Rats. J. Ethnopharmacol. 2014, 151, 591–600.Ki, H.-J.; Kim, S.Y.; Lee, S.H.; Moon, J.-Y.; Jeong, K.H.; Lee, T.W.; Ihm, C.G.; Kim, S.K.; Chung, J.-H.; Kang, S.W.; et al. Transforming Growth Factor-β Receptor 2 Gene Polymorphisms Are Associated with End-Stage Renal Disease. Kidney Res. Clin. Pract. 2015, 34, 93–97.Miura, J.; Yamagishi, S.I.; Uchigata, Y.; Takeuchi, M.; Yamamoto, H.; Makita, Z.; Iwamoto, Y. Serum Levels of Non-Carboxymethyllysine Advanced Glycation Endproducts Are Correlated to Severity of Microvascular Complications in Patients with Type 1 Diabetes. J. Diabetes Complicat. 2003, 17, 16–21Liu, J.; Huang, K.; Cai, G.-Y.; Chen, X.-M.; Yang, J.-R.; Lin, L.-R.; Yang, J.; Huo, B.-G.; Zhan, J.; He, Y.-N. Receptor for Advanced Glycation End-Products Promotes Premature Senescence of Proximal Tubular Epithelial Cells via Activation of Endoplasmic Reticulum Stress-Dependent P21 Signaling. Cell Signal 2014, 26, 110–121.Li, Y.; Ma, W.; Xie, C.; Zhang, M.; Yin, X.; Wang, F.; Xu, J.; Shi, B. Identification of Genes and Signaling Pathways Associated with Diabetic Neuropathy Using a Weighted Correlation Network Analysis: A Consort Study. Medicine 2016, 95, e5443.Araszkiewicz, A.; Gandecka, A.; Nowicki, M.; Uruska, A.; Malińska, A.; Kowalska, K.; Wierusz-Wysocka, B.; Zozulińska-Ziółkiewicz, D. Association between Small Fiber Neuropathy and Higher Skin Accumulation of Advanced Glycation End Products in Patients with Type 1 Diabetes. Pol. Arch. Med. Wewn. 2016, 126, 847–853.Duran-Jimenez, B.; Dobler, D.; Moffatt, S.; Rabbani, N.; Streuli, C.H.; Thornalley, P.J.; Tomlinson, D.R.; Gardiner, N.J. Advanced Glycation End Products in Extracellular Matrix Proteins Contribute to the Failure of Sensory Nerve Regeneration in Diabetes. Diabetes 2009, 58, 2893–2903.Loske, C.; Neumann, A.; Cunningham, A.M.; Nichol, K.; Schinzel, R.; Riederer, P.; Münch, G. Cytotoxicity of Advanced Glycation Endproducts Is Mediated by Oxidative Stress. J. Neur. Transm 1998, 105, 1005–1015.Yu, T.; Li, L.; Chen, T.; Liu, Z.; Liu, H.; Li, Z. Erythropoietin Attenuates Advanced Glycation Endproducts-Induced Toxicity of Schwann Cells in Vitro. Neurochem. Res. 2015, 40, 698–712.Guitart, K.; Loers, G.; Schachner, M.; Kleene, R. Prion Protein Regulates Glutathione Metabolism and Neural Glutamate and Cysteine Uptake via Excitatory Amino Acid Transporter 3. J. Neurochem. 2015, 133, 558–571.Bus, S.A.; Haspels, R.; Busch-Westbroek, T.E. Evaluation and Optimization of Therapeutic Footwear for Neuropathic Diabetic Foot Patients Using In-Shoe Plantar Pressure Analysis. Diabetes Care 2011, 34, 1595–1600.Vouillarmet, J.; Maucort-Boulch, D.; Michon, P.; Thivolet, C. Advanced Glycation End Products Assessed by Skin Autofluorescence: A New Marker of Diabetic Foot Ulceration. Diabetes Technol. 2013, 15, 601–605.American Diabetes Association. Screening Guidelines for Diabetic Retinopathy: Clinical Guideline. Ophthalmology 1992, 99, 1626–1628.Frank, R.N. Diabetic Retinopathy. N. Engl. J. Med. 2004, 350, 48–58.Tracey, M.L.; McHugh, S.M.; Fitzgerald, A.P.; Buckley, C.M.; Canavan, R.J.; Kearney, P.M. Trends in Blindness Due to Diabetic Retinopathy among Adults Aged 18-69years over a Decade in Ireland. Diabetes Res. Clin. Pract. 2016, 121, 1–8.Kowluru, R.A. Effect of Advanced Glycation End Products on Accelerated Apoptosis of Retinal Capillary Cells under in Vitro Conditions. Life Sci. 2005, 76, 1051–1060.Bringmann, A.; Pannicke, T.; Grosche, J.; Francke, M.; Wiedemann, P.; Skatchkov, S.N.; Osborne, N.N.; Reichenbach, A. Müller Cells in the Healthy and Diseased Retina. Prog. Retin. Eye Res. 2006, 25, 397–424.Cheng, L.; Bu, H.; Portillo, J.-A.C.; Li, Y.; Subauste, C.S.; Huang, S.S.; Kern, T.S.; Lin, F. Modulation of Retinal Müller Cells by Complement Receptor C5aR. Invest. Ophthalmol. Vis. Sci. 2013, 54, 8191–8198.Yamagishi, S.; Nakamura, K.; Matsui, T.; Sato, T.; Takeuchi, M. Potential Utility of Statins, 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors in Diabetic Retinopathy. Med. Hypotheses 2006, 66, 1019–1021.AI, J.; LIU, Y.; SUN, J.-H. Advanced Glycation End-Products Stimulate Basic Fibroblast Growth Factor Expression in Cultured Müller Cells. Mol. Med. Rep. 2013, 7, 16–20.Shimizu, F.; Sano, Y.; Haruki, H.; Kanda, T. Advanced Glycation End-Products Induce Basement Membrane Hypertrophy in Endoneurial Microvessels and Disrupt the Blood-Nerve Barrier by Stimulating the Release of TGF-β and Vascular Endothelial Growth Factor (VEGF) by Pericytes. Diabetologia 2011, 54, 1517–1526.Rubler, S.; Dlugash, J.; Yuceoglu, Y.Z.; Kumral, T.; Branwood, A.W.; Grishman, A. New Type of Cardiomyopathy Associated with Diabetic Glomerulosclerosis. Am. J. Cardiol. 1972, 30, 595–602.Abd-El Aziz, F.M.; Abdelghaffar, S.; Hussien, E.M.; Fattouh, A.M. Evaluation of Cardiac Functions in Children and Adolescents with Type 1 Diabetes. J. Cardiovasc. Ultrasound. 2017, 25, 12–19.Yang, Q.; Gao, H.; Dong, R.; Wu, Y.-Q. Sequential Changes of Endoplasmic Reticulum Stress and Apoptosis in Myocardial Fibrosis of Diabetes Mellitus-Induced Rats. Mol. Med. Rep. 2016, 13, 5037–5044.Novoa, U.; Arauna, D.; Moran, M.; Nuñez, M.; Zagmutt, S.; Saldivia, S.; Valdes, C.; Villaseñor, J.; Zambrano, C.G.; Gonzalez, D.R. High-Intensity Exercise Reduces Cardiac Fibrosis and Hypertrophy but Does Not Restore the Nitroso-Redox Imbalance in Diabetic Cardiomyopathy. Oxid. Med. Cell Longev. 2017, 2017, 7921363.Cao, W.; Chen, J.; Chen, Y.; Chen, X.; Liu, P. Advanced Glycation End Products Promote Heart Failure through Inducing the Immune Maturation of Dendritic Cells. Appl. Biochem. Biotechnol. 2014, 172, 4062–4077.Zerif, E.; Maalem, A.; Gaudreau, S.; Guindi, C.; Ramzan, M.; Véroneau, S.; Gris, D.; Stankova, J.; Rola-Pleszczynski, M.; Mourad, W.; et al. Constitutively Active Stat5b Signaling Confers Tolerogenic Functions to Dendritic Cells of NOD Mice and Halts Diabetes Progression. J. Autoimmun. 2017, 76, 63–74.Anzai, A.; Anzai, T.; Nagai, S.; Maekawa, Y.; Naito, K.; Kaneko, H.; Sugano, Y.; Takahashi, T.; Abe, H.; Mochizuki, S.; et al. Regulatory Role of Dendritic Cells in Postinfarction Healing and Left Ventricular Remodeling. Circulation 2012, 125, 1234–1245.Anzai, A.; Anzai, T.; Nagai, S.; Maekawa, Y.; Naito, K.; Kaneko, H.; Sugano, Y.; Takahashi, T.; Abe, H.; Mochizuki, S.; et al. Regulatory Role of Dendritic Cells in Postinfarction Healing and Left Ventricular Remodeling. Circulation 2012, 125, 1234–1245.Geisterfer-Lowrance, A.A.; Kass, S.; Tanigawa, G.; Vosberg, H.P.; McKenna, W.; Seidman, C.E.; Seidman, J.G. A Molecular Basis for Familial Hypertrophic Cardiomyopathy: A Beta Cardiac Myosin Heavy Chain Gene Missense Mutation. Cell 1990, 62, 999–1006.Herrmann, K.L.; McCulloch, A.D.; Omens, J.H. Glycated Collagen Cross-Linking Alters Cardiac Mechanics in Volume-Overload Hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, H1277–H1284.Willemsen, S.; Hartog, J.W.L.; Hummel, Y.M.; van Ruijven, M.H.I.; van der Horst, I.C.C.; van Veldhuisen, D.J.; Voors, A.A. Tissue Advanced Glycation End Products Are Associated with Diastolic Function and Aerobic Exercise Capacity in Diabetic Heart Failure Patients. Eur. J. Heart Fail 2011, 13, 76–82.Fang, M.; Wang, J.; Li, S.; Guo, Y. Advanced Glycation End-Products Accelerate the Cardiac Aging Process through the Receptor for Advanced Glycation End-Products/Transforming Growth Factor-β-Smad Signaling Pathway in Cardiac Fibroblasts. Geriatr. Gerontol. Int. 2016, 16, 522–527.Kawashima, T.; Inuzuka, Y.; Okuda, J.; Kato, T.; Niizuma, S.; Tamaki, Y.; Iwanaga, Y.; Kawamoto, A.; Narazaki, M.; Matsuda, T.; et al. Constitutive SIRT1 Overexpression Impairs Mitochondria and Reduces Cardiac Function in Mice. J. Mol. Cell Cardiol. 2011, 51, 1026–1036.Gu, X.S.; Wang, Z.B.; Ye, Z.; Lei, J.P.; Li, L.; Su, D.F.; Zheng, X. Resveratrol, an Activator of SIRT1, Upregulates AMPK and Improves Cardiac Function in Heart Failure. Genet. Mol. Res. 2014, 13, 323–335.Yuan, Q.; Zhou, Q.-Y.; Liu, D.; Yu, L.; Zhan, L.; Li, X.-J.; Peng, H.-Y.; Zhang, X.-L.; Yuan, X.-C. Advanced Glycation End-Products Impair Na+/K+-ATPase Activity in Diabetic Cardiomyopathy: Role of the Adenosine Monophosphate-Activated Protein Kinase/Sirtuin 1 Pathway. Clin. Exp. Pharm. Physiol. 2014, 41, 127–133.Yan, D.; Luo, X.; Li, Y.; Liu, W.; Deng, J.; Zheng, N.; Gao, K.; Huang, Q.; Liu, J. Effects of Advanced Glycation End Products on Calcium Handling in Cardiomyocytes. CRD 2014, 129, 75–83.Niggli, E. The Cardiac Sarcoplasmic Reticulum. Circ. Res. 2007, 100, 5–6.Fischer, T.H.; Herting, J.; Tirilomis, T.; Renner, A.; Neef, S.; Toischer, K.; Ellenberger, D.; Förster, A.; Schmitto, J.D.; Gummert, J.; et al. Ca2+/Calmodulin-Dependent Protein Kinase II and Protein Kinase A Differentially Regulate Sarcoplasmic Reticulum Ca2+ Leak in Human Cardiac Pathology. Circulation 2013, 128, 970–981.Matsui, T.; Higashimoto, Y.; Nishino, Y.; Nakamura, N.; Fukami, K.; Yamagishi, S.-I. RAGE-Aptamer Blocks the Development and Progression of Experimental Diabetic Nephropathy. Diabetes 2017, 66, 1683–1695.de la Hoz, C.L.; Cheng, C.; Fernyhough, P.; Zochodne, D.W. A Model of Chronic Diabetic Polyneuropathy: Benefits from Intranasal Insulin Are Modified by Sex and RAGE Deletion. Am. J. Physiol.Endocrinol. Metab. 2017, 312, E407–E419.Yamagishi, S.-I.; Matsui, T. Pathologic Role of Dietary Advanced Glycation End Products in Cardiometabolic Disorders, and Therapeutic Intervention. Nutrition 2016, 32, 157–165.Monnier, V.M.; Bautista, O.; Kenny, D.; Sell, D.R.; Fogarty, J.; Dahms, W.; Cleary, P.A.; Lachin, J.; Genuth, S. Skin Collagen Glycation, Glycoxidation, and Crosslinking Are Lower in Subjects with Long-Term Intensive versus Conventional Therapy of Type 1 Diabetes: Relevance of Glycated Collagen Products versus HbA1c as Markers of Diabetic Complications. DCCT Skin Collagen Ancillary Study Group. Diabetes Control and Complications Trial. Diabetes 1999, 48, 870–880.Meerwaldt, R.; Links, T.; Graaff, R.; Thorpe, S.R.; Baynes, J.W.; Hartog, J.; Gans, R.; Smit, A. Simple Noninvasive Measurement of Skin Autofluorescence. Ann. N. Y. Acad. Sci. 2005, 1043, 290–298.Siriopol, D.; Hogas, S.; Veisa, G.; Mititiuc, I.; Volovat, C.; Apetrii, M.; Onofriescu, M.; Busila, I.; Oleniuc, M.; Covic, A. Tissue Advanced Glycation End Products (AGEs), Measured by Skin Autofluorescence, Predict Mortality in Peritoneal Dialysis. Int. Urol. Nephrol. 2015, 47, 563–569.Willemsen, S.; Hartog, J.W.L.; Heiner-Fokkema, M.R.; van Veldhuisen, D.J.; Voors, A.A. Advanced Glycation End-Products, a Pathophysiological Pathway in the Cardiorenal Syndrome. Heart Fail Rev. 2012, 17, 221–228.Zhang, Y.; Lapidos, K.A.; Gal-Moscovici, A.; Sprague, S.M.; Ameer, G.A. A Receptor-Based Bioadsorbent to Target Advanced Glycation End Products in Chronic Kidney Disease. Artif. Organs 2014, 38, 474–483.Haddad, M.; Knani, I.; Bouzidi, H.; Berriche, O.; Hammami, M.; Kerkeni, M. Plasma Levels of Pentosidine, Carboxymethyl-Lysine, Soluble Receptor for Advanced Glycation End Products, and Metabolic Syndrome: The Metformin Effect. Dis. Markers 2016, 2016, 6248264.McNair, E.; Qureshi, M.; Prasad, K.; Pearce, C. Atherosclerosis and the Hypercholesterolemic AGE–RAGE Axis. Int. J. Angiol. 2016, 25, 110–116.Scheijen, J.L.J.M.; van de Waarenburg, M.P.H.; Stehouwer, C.D.A.; Schalkwijk, C.G. Measurement of Pentosidine in Human Plasma Protein by a Single-Column High-Performance Liquid Chromatography Method with Fluorescence Detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 610–614.Bird, I.M. High Performance Liquid Chromatography: Principles and Clinical Applications. BMJ 1989, 299, 783–787.Vogeser, M.; Parhofer, K.G. Liquid Chromatography Tandem-Mass Spectrometry (LC-MS/MS)--Technique and Applications in Endocrinology. Exp. Clin. Endocrinol. Diabetes 2007, 115, 559–570Willemsen, S.; Hartog, J.W.L.; van Veldhuisen, D.J.; van der Meer, P.; Roze, J.F.; Jaarsma, T.; Schalkwijk, C.; van der Horst, I.C.C.; Hillege, H.L.; Voors, A.A. The Role of Advanced Glycation End-Products and Their Receptor on Outcome in Heart Failure Patients with Preserved and Reduced Ejection Fraction. Am. Heart J. 2012, 164, 742–749.Vivekanadan-Giri, A.; Wang, J.H.; Byun, J.; Pennathur, S. Mass Spectrometric Quantification of Amino Acid Oxidation Products Identifies Oxidative Mechanisms of Diabetic End-Organ Damage. Rev. Endocr. Metab. Disord. 2008, 9, 275–287.Petrovic, R.; Futas, J.; Chandoga, J.; Jakus, V. Rapid and Simple Method for Determination of Nepsilon-(Carboxymethyl)Lysine and Nepsilon-(Carboxyethyl)Lysine in Urine Using Gas Chromatography/Mass Spectrometry. Biomed. Chromatogr. 2005, 19, 649–654.Thornalley, P.J. Measurement of Protein Glycation, Glycated Peptides, and Glycation Free Adducts. Perit. Dial. Int. 2005, 25, 522–533.Maciel, E.; da Silva, R.N.; Simões, C.; Melo, T.; Ferreira, R.; Domingues, P.; Domingues, M.R.M. Liquid Chromatography-Tandem Mass Spectrometry of Phosphatidylserine Advanced Glycated End Products. Chem. Phys. Lipids 2013, 174, 1–7.Perkins, B.A.; Rabbani, N.; Weston, A.; Ficociello, L.H.; Adaikalakoteswari, A.; Niewczas, M.; Warram, J.; Krolewski, A.S.; Thornalley, P. Serum Levels of Advanced Glycation Endproducts and Other Markers of Protein Damage in Early Diabetic Nephropathy in Type 1 Diabetes. PLoS ONE 2012, 7, e35655.Jaisson, S.; Souchon, P.-F.; Desmons, A.; Salmon, A.-S.; Delemer, B.; Gillery, P. Early Formation of Serum Advanced Glycation End-Products in Children with Type 1 Diabetes Mellitus: Relationship with Glycemic Control. J. Pediatr. 2016, 172, 56–62.Meerwaldt, R.; Graaff, R.; Oomen, P.H.N.; Links, T.P.; Jager, J.J.; Alderson, N.L.; Thorpe, S.R.; Baynes, J.W.; Gans, R.O.B.; Smit, A.J. Simple Non-Invasive Assessment of Advanced Glycation Endproduct Accumulation. Diabetologia 2004, 47, 1324–1330.Hricik, D.E.; Wu, Y.C.; Schulak, A.; Friedlander, M.A. Disparate Changes in Plasma and Tissue Pentosidine Levels after Kidney and Kidney-Pancreas Transplantation. Clin. Transpl. 1996, 10, 568–573.Monnier, V.M.; Sell, D.R.; Strauch, C.; Sun, W.; Lachin, J.M.; Cleary, P.A.; Genuth, S. The Association between Skin Collagen Glucosepane and Past Progression of Microvascular and Neuropathic Complications in Type 1 Diabetes. J. Diabetes Complicat. 2013, 27, 141–149.Januszewski, A.S.; Sachithanandan, N.; Karschimkus, C.; O’Neal, D.N.; Yeung, C.K.; Alkatib, N.; Jenkins, A.J. Non-Invasive Measures of Tissue Autofluorescence Are Increased in Type 1 Diabetes Complications and Correlate with a Non-Invasive Measure of Vascular Dysfunction. Diabet. Med. 2012, 29, 726–733Genuth, S.; Sun, W.; Cleary, P.; Sell, D.R.; Dahms, W.; Malone, J.; Sivitz, W.; Monnier, V.M. Glycation and Carboxymethyllysine Levels in Skin Collagen Predict the Risk of Future 10-Year Progression of Diabetic Retinopathy and Nephropathy in the Diabetes Control and Complications Trial and Epidemiology of Diabetes Interventions and Complications Participants With Type 1 Diabetes. Diabetes 2005, 54, 3103–3111.van der Heyden, J.C.; Birnie, E.; Mul, D.; Bovenberg, S.; Veeze, H.J.; Aanstoot, H.-J. Increased Skin Autofluorescence of Children and Adolescents with Type 1 Diabetes despite a Well-Controlled HbA1c: Results from a Cohort Study. BMC Endocr. Disord. 2016, 16, 49.van Waateringe, R.P.; Slagter, S.N.; van der Klauw, M.M.; van Vliet-Ostaptchouk, J.V.; Graaff, R.; Paterson, A.D.; Lutgers, H.L.; Wolffenbuttel, B.H.R. Lifestyle and Clinical Determinants of Skin Autofluorescence in a Population-Based Cohort Study. Eur. J. Clin. Investig. 2016, 46, 481–490.Rajaobelina, K.; Helmer, C.; Vélayoudom-Céphise, F.-L.; Nov, S.; Farges, B.; Pupier, E.; Blanco, L.; Hugo, M.; Gin, H.; Rigalleau, V. Progression of Skin Autofluorescence of AGEs over 4 Years in Patients with Type 1 Diabetes. Diabetes/Metab. Res. Rev. 2017, 33, e2917.Kouidrat, Y.; Zaitouni, A.; Amad, A.; Diouf, M.; Desailloud, R.; Loas, G.; Lalau, J.-D. Skin Autofluorescence (a Marker for Advanced Glycation End Products) and Erectile Dysfunction in Diabetes. J. Diabetes Complicat. 2017, 31, 108–113.Temma, J.; Matsuhisa, M.; Horie, T.; Kuroda, A.; Mori, H.; Tamaki, M.; Endo, I.; Aihara, K.; Abe, M.; Matsumoto, T. Non-Invasive Measurement of Skin Autofluorescence as a Beneficial Surrogate Marker for Atherosclerosis in Patients with Type 2 Diabetes. J. Med. Investig. 2015, 62, 126–129.Verzijl, N.; DeGroot, J.; Thorpe, S.R.; Bank, R.A.; Shaw, J.N.; Lyons, T.J.; Bijlsma, J.W.; Lafeber, F.P.; Baynes, J.W.; TeKoppele, J.M. Effect of Collagen Turnover on the Accumulation of Advanced Glycation End Products. J. Biol. Chem. 2000, 275, 39027–39031.Sugisawa, E.; Miura, J.; Iwamoto, Y.; Uchigata, Y. Skin Autofluorescence Reflects Integration of Past Long-Term Glycemic Control in Patients with Type 1 Diabetes. Diabetes Care 2013, 36, 2339–2345.Wang, C.-C.; Wang, Y.-C.; Wang, G.-J.; Shen, M.-Y.; Chang, Y.-L.; Liou, S.-Y.; Chen, H.-C.; Lee, A.-S.; Chang, K.-C.; Chen, W.-Y.; et al. Skin Autofluorescence Is Associated with Inappropriate Left Ventricular Mass and Diastolic Dysfunction in Subjects at Risk for Cardiovascular Disease. Cardiovasc. Diabetol. 2017, 16, 15.Brenner, M.; Hearing, V.J. The Protective Role of Melanin Against UV Damage in Human Skin. Photochem. Photobiol. 2008, 84, 539–549. [CrossRef]Báez, E.A.; Shah, S.; Felipe, D.; Maynard, J.; Chalew, S. Correlation of Advanced Glycation Endproducts Estimated From Skin Fluorescence in First-Degree Relatives. J. Diabetes Sci. Technol. 2014, 9, 278–281. [CrossRef]Nenna, A.; Nappi, F.; Avtaar Singh, S.S.; Sutherland, F.W.; Di Domenico, F.; Chello, M.; Spadaccio, C. Pharmacologic Approaches Against Advanced Glycation End Products (AGEs) in Diabetic Cardiovascular Disease. Res. Cardiovasc. Med. 2015, 4. [CrossRef]Prasad, C.; Davis, K.E.; Imrhan, V.; Juma, S.; Vijayagopal, P. Advanced Glycation End Products and Risks for Chronic Diseases: Intervening Through Lifestyle Modification. Am. J. Lifestyle Med. 2019, 13, 384–404. [CrossRef] [PubMed]van Waateringe, R.P.; Mook-Kanamori, M.J.; Slagter, S.N.; van der Klauw, M.M.; van der Vliet-Ostaptchouk, J.V.; Graaff, R.; Lutgers, H.L.; Suhre, K.; Selim, M.M.E.-D.; Mook-Kanamori, D.O.; et al. The Association between Various Smoking Behaviors, Cotinine Biomarkers and Skin Autofluorescence, a Marker for Advanced Glycation End Product Accumulation. PLoS ONE 2017, 12, e0179330. [CrossRef] [PubMed]Prasad, K.; Dhar, I.; Caspar-Bell, G. Role of Advanced Glycation End Products and Its Receptors in the Pathogenesis of Cigarette Smoke-Induced Cardiovascular Disease. Int. J. Angiol. 2015, 24, 75–80. [CrossRef] [PubMed]Kim, C.-S.; Park, S.; Kim, J. The Role of Glycation in the Pathogenesis of Aging and Its Prevention through Herbal Products and Physical Exercise. J. Exerc. Nutr. Biochem. 2017, 21, 55–61. [CrossRef] [PubMed]Borg, D.J.; Forbes, J.M. Targeting Advanced Glycation with Pharmaceutical Agents: Where Are We Now? Glycoconj. J. 2016, 33, 653–670. [CrossRef]Garg, S.; Syngle, A.; Vohra, K. Efficacy and Tolerability of Advanced Glycation End-Products Inhibitor in Osteoarthritis: A Randomized, Double-Blind, Placebo-Controlled Study. Clin. J. Pain. 2013, 29, 717–724. [CrossRef]Mirmiranpour, H.; Mousavizadeh, M.; Noshad, S.; Ghavami, M.; Ebadi, M.; Ghasemiesfe, M.; Nakhjavani, M.; Esteghamati, A. Comparative Effects of Pioglitazone and Metformin on Oxidative Stress Markers in Newly Diagnosed Type 2 Diabetes Patients: A Randomized Clinical Trial. J. Diabetes Complicat. 2013, 27, 501–507. [CrossRef]Derosa, G.; Bonaventura, A.; Romano, D.; Bianchi, L.; Fogari, E.; D’Angelo, A.; Maffioli, P. Enalapril/Lercanidipine Combination on Markers of Cardiovascular Risk: A Randomized Study. J. Am. Soc. Hypertens. 2014, 8, 422–428. [CrossRef]Contreras, C.L.; Guzman-Rosiles, I.; Castillo, D.D.; Gomez-Ojeda, A.; Garay-Sevilla, M.E. Advanced Glycation End Products (AGEs) and SRAGE Levels after Benfotiamine Treatment in Diabetes Mellitus Type 2. FASEB J. 2017, 31, 646.32. [CrossRef]Fujimoto, N.; Hastings Jeffrey, L.; Carrick-Ranson, G.; Shafer Keri, M.; Shibata, S.; Bhella Paul, S.; Abdullah Shuaib, M.; Barkley Kyler, W.; Adams-Huet, B.; Boyd Kara, N.; et al. Cardiovascular Effects of 1 Year of Alagebrium and Endurance Exercise Training in Healthy Older Individuals. Circ. Heart Fail. 2013, 6, 1155–1164. [CrossRef] [PubMed]Oudegeest-Sander, M.H.; Rikkert, M.G.M.O.; Smits, P.; Thijssen, D.H.J.; van Dijk, A.P.J.; Levine, B.D.; Hopman, M.T.E. The Effect of an Advanced Glycation End-Product Crosslink Breaker and Exercise Training on Vascular Function in Older Individuals: A Randomized Factorial Design Trial. Exp. Gerontol. 2013, 48, 1509–1517. [CrossRef] [PubMed]Yubero-Serrano, E.M.; Woodward, M.; Poretsky, L.; Vlassara, H.; Striker, G.E. AGE-less Study Group Effects of Sevelamer Carbonate on Advanced Glycation End Products and Antioxidant/pro-Oxidant Status in Patients with Diabetic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2015, 10, 759–766. [CrossRef]Ueda, S.; Yamagishi, S.; Takeuchi, M.; Kohno, K.; Shibata, R.; Matsumoto, Y.; Kaneyuki, U.; Fujimura, T.; Hayashida, A.; Okuda, S. Oral Adsorbent AST–120 Decreases Serum Levels of AGEs in Patients with Chronic Renal Failure. Mol. Med. 2006, 12, 180–184. [CrossRef] [PubMed]Schulman, G.; Berl, T.; Beck, G.J.; Remuzzi, G.; Ritz, E.; Arita, K.; Kato, A.; Shimizu, M. Randomized Placebo-Controlled EPPIC Trials of AST-120 in CKD. J. Am. Soc. Nephrol. 2015, 26, 1732–1746. [CrossRef]Yamagishi, S.; Nakamura, K.; Matsui, T.; Inoue, H.; Takeuchi, M. Oral Administration of AST-120 (Kremezin) Is a Promising Therapeutic Strategy for Advanced Glycation End Product (AGE)-Related Disorders. Med. Hypotheses 2007, 69, 666–668. [CrossRef]Habbous, S.; Przech, S.; Acedillo, R.; Sarma, S.; Garg, A.X.; Martin, J. The Efficacy and Safety of Sevelamer and Lanthanum versus Calcium-Containing and Iron-Based Binders in Treating Hyperphosphatemia in Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Nephrol. Dial. Transpl. 2017, 32, 111–125. [CrossRef]Vlassara, H.; Uribarri, J.; Cai, W.; Goodman, S.; Pyzik, R.; Post, J.; Grosjean, F.; Woodward, M.; Striker, G.E. Effects of Sevelamer on HbA1c, Inflammation, and Advanced Glycation End Products in Diabetic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2012, 7, 934–942. [CrossRef] [PubMed]Edelstein, D.; Brownlee, M. Mechanistic Studies of Advanced Glycosylation End Product Inhibition by Aminoguanidine. Diabetes 1992, 41, 26–29. [CrossRef]Brownlee, M.; Vlassara, H.; Kooney, A.; Ulrich, P.; Cerami, A. Aminoguanidine Prevents Diabetes-Induced Arterial Wall Protein Cross-Linking. Science 1986, 232, 1629–1632. [CrossRef] [PubMed]Joglekar, M.M.; Bavkar, L.N.; Sistla, S.; Arvindekar, A.U. Effective Inhibition of Protein Glycation by Combinatorial Usage of Limonene and Aminoguanidine through Differential and Synergistic Mechanisms. Int. J. Biol. Macromol. 2017, 99, 563–569. [CrossRef]Thornalley, P.J. Use of Aminoguanidine (Pimagedine) to Prevent the Formation of Advanced Glycation Endproducts. Arch Biochem Biophys 2003, 419, 31–40. [CrossRef] [PubMed]Soulis-Liparota, T.; Cooper, M.; Papazoglou, D.; Clarke, B.; Jerums, G. Retardation by Aminoguanidine of Development of Albuminuria, Mesangial Expansion, and Tissue Fluorescence in Streptozocin-Induced Diabetic Rat. Diabetes 1991, 40, 1328–1334. [CrossRef] [PubMed]Yagihashi, S.; Kamijo, M.; Baba, M.; Yagihashi, N.; Nagai, K. Effect of Aminoguanidine on Functional and Structural Abnormalities in Peripheral Nerve of STZ-Induced Diabetic Rats. Diabetes 1992, 41, 47–52. [CrossRef]Sampath, C.; Zhu, Y.; Sang, S.; Ahmedna, M. Bioactive Compounds Isolated from Apple, Tea, and Ginger Protect against Dicarbonyl Induced Stress in Cultured Human Retinal Epithelial Cells. Phytomedicine 2016, 23, 200–213. [CrossRef]Tanaka, Y.; Uchino, H.; Shimizu, T.; Yoshii, H.; Niwa, M.; Ohmura, C.; Mitsuhashi, N.; Onuma, T.; Kawamori, R. Effect of Metformin on Advanced Glycation Endproduct Formation and Peripheral Nerve Function in Streptozotocin-Induced Diabetic Rats. Eur. J. Pharm. 1999, 376, 17–22. [CrossRef]Engelen, L.; Stehouwer, C.D.A.; Schalkwijk, C.G. Current Therapeutic Interventions in the Glycation Pathway: Evidence from Clinical Studies. Diabetes Obes. Metab. 2013, 15, 677–689. [CrossRef]Jang, D.S.; Kim, J.M.; Kim, J.; Yoo, J.L.; Kim, Y.S.; Kim, J.S. Effects of Compounds Isolated from the Fruits of Rumex Japonicus on the Protein Glycation. Chem. Biodivers. 2008, 5, 2718–2723. [CrossRef]Starowicz, M.; Zieli ´nski, H. Inhibition of Advanced Glycation End-Product Formation by High Antioxidant-Leveled Spices Commonly Used in European Cuisine. Antioxidants 2019, 8, 100. [CrossRef]Gugliucci, A.; Bastos, D.H.M.; Schulze, J.; Souza, M.F.F. Caffeic and Chlorogenic Acids in Ilex Paraguariensis Extracts Are the Main Inhibitors of AGE Generation by Methylglyoxal in Model Proteins. Fitoterapia 2009, 80, 339–344. [CrossRef]. Perez Gutierrez, R.M.; Flores Cotera, L.B.; Gonzalez, A.M.N. Evaluation of the Antioxidant and Anti-Glication Effects of the Hexane Extract from Piper Auritum Leaves in Vitro and Beneficial Activity on Oxidative Stress and Advanced Glycation End-Product-Mediated Renal Injury in Streptozotocin-Treated Diabetic Rats. Molecules 2012, 17, 1897. [CrossRef] [PubMed]Yeh, W.-J.; Hsia, S.-M.; Lee, W.-H.; Wu, C.-H. Polyphenols with Antiglycation Activity and Mechanisms of Action: A Review of Recent Findings. J. Food Drug Anal. 2017, 25, 84–92. [CrossRef] [PubMed]Wang, W.; Yang, R.; Yao, H.; Wu, Y.; Pan, W.; Jia, A.-Q. Inhibiting the Formation of Advanced Glycation End-Products by Three Stilbenes and the Identification of Their Adducts. Food Chem. 2019, 295, 10–15. [CrossRef] [PubMed]Ferrannini, E. The Target of Metformin in Type 2 Diabetes. N. Engl. J. Med. 2014, 371, 1547–1548. [CrossRef] [PubMed]Diaz-Morales, N.; Rovira-Llopis, S.; Bañuls, C.; Lopez-Domenech, S.; Escribano-Lopez, I.; Veses, S.; Jover, A.; Rocha, M.; Hernandez-Mijares, A.; Victor, V.M. Does Metformin Protect Diabetic Patients from Oxidative Stress and Leukocyte-Endothelium Interactions? Antioxid. Redox Signal 2017, 27, 1439–1445. [CrossRef]Esteghamati, A.; Eskandari, D.; Mirmiranpour, H.; Noshad, S.; Mousavizadeh, M.; Hedayati, M.; Nakhjavani, M. Effects of Metformin on Markers of Oxidative Stress and Antioxidant Reserve in Patients with Newly Diagnosed Type 2 Diabetes: A Randomized Clinical Trial. Clin. Nutr. 2013, 32, 179–185. [CrossRef]Ruggiero-Lopez, D.; Lecomte, M.; Moinet, G.; Patereau, G.; Lagarde, M.; Wiernsperger, N. Reaction of Metformin with Dicarbonyl Compounds. Possible Implication in the Inhibition of Advanced Glycation End Product Formation. Biochem. Pharm. 1999, 58, 1765–1773. [CrossRef]Adeshara, K.; Tupe, R. Antiglycation and Cell Protective Actions of Metformin and Glipizide in Erythrocytes and Monocytes. Mol. Biol. Rep. 2016, 43, 195–205. [CrossRef]Metz, T.O.; Alderson, N.L.; Thorpe, S.R.; Baynes, J.W. Pyridoxamine, an Inhibitor of Advanced Glycation and Lipoxidation Reactions: A Novel Therapy for Treatment of Diabetic Complications. Arch. Biochem. Biophys. 2003, 419, 41–49. [CrossRef]Hammes, H.-P.; Du, X.; Edelstein, D.; Taguchi, T.; Matsumura, T.; Ju, Q.; Lin, J.; Bierhaus, A.; Nawroth, P.; Hannak, D.; et al. Benfotiamine Blocks Three Major Pathways of Hyperglycemic Damage and Prevents Experimental Diabetic Retinopathy. Nat. Med. 2003, 9, 294–299. [CrossRef] [PubMed]Voziyan, P.A.; Hudson, B.G. Pyridoxamine as a Multifunctional Pharmaceutical: Targeting Pathogenic Glycation and Oxidative Damage. Cell Mol. Life Sci. 2005, 62, 1671–1681. [CrossRef] [PubMed]Deluyker, D.; Ferferieva, V.; Driesen, R.B.; Verboven, M.; Lambrichts, I.; Bito, V. Pyridoxamine Improves Survival and Limits Cardiac Dysfunction after MI. Sci. Rep. 2017, 7, 1–12. [CrossRef]Pereira, A.; Fernandes, R.; Crisóstomo, J.; Seiça, R.M.; Sena, C.M. The Sulforaphane and Pyridoxamine Supplementation Normalize Endothelial Dysfunction Associated with Type 2 Diabetes. Sci. Rep. 2017, 7, 14357. [CrossRef]Nagai, R.; Murray, D.B.; Metz, T.O.; Baynes, J.W. Chelation: A Fundamental Mechanism of Action of AGE Inhibitors, AGE Breakers, and Other Inhibitors of Diabetes Complications. Diabetes 2012, 61, 549–559. [CrossRef] [PubMed]Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced Glycoxidation and Lipoxidation End Products (AGEs and ALEs): An Overview of Their Mechanisms of Formation. Free Radic. Res. 2013, 47 (Suppl. 1), 3–27. [CrossRef]Šebeková, K.; Schinzel, R.; Münch, G.; Krivošíková, Z.; Dzúrik, R.; Heidland, A. Advanced Glycation End-Product Levels in Subtotally Nephrectomized Rats: Beneficial Effects of Angiotensin II Receptor 1 Antagonist Losartan. MEM 1999, 25, 380–383. [CrossRef] [PubMed]Monacelli, F.; Poggi, A.; Storace, D.; Durante, A.; Traverso, N.; Viviani, G.L.; Odetti, P. Effects of Valsartan Therapy on Protein Glycoxidation. Metabolism 2006, 55, 1619–1624. [CrossRef]. Miyata, T.; van Ypersele de Strihou, C. Angiotensin II Receptor Blockers and Angiotensin Converting Enzyme Inhibitors: Implication of Radical Scavenging and Transition Metal Chelation in Inhibition of Advanced Glycation End Product Formation. Arch. Biochem. Biophys. 2003, 419, 50–54. [CrossRef]Chang, P.-C.; Tsai, S.-C.; Chong, L.Y.; Kao, M.-J. N-Phenacylthiazolium Bromide Inhibits the Advanced Glycation End Product (AGE)-AGE Receptor Axis to Modulate Experimental Periodontitis in Rats. J. Periodontol. 2014, 85, e268–e276. [CrossRef] [PubMed]Wolffenbuttel, B.H.R.; Boulanger, C.M.; Crijns, F.R.L.; Huijberts, M.S.P.; Poitevin, P.; Swennen, G.N.M.; Vasan, S.; Egan, J.J.; Ulrich, P.; Cerami, A.; et al. Breakers of Advanced Glycation End Products Restore Large Artery Properties in Experimental Diabetes. Proc. Natl. Acad. Sci. USA 1998, 95, 4630–4634. [CrossRef]Vasan, S.; Zhang, X.; Zhang, X.; Kapurniotu, A.; Bernhagen, J.; Teichberg, S.; Basgen, J.; Wagle, D.; Shih, D.; Terlecky, I.; et al. An Agent Cleaving Glucose-Derived Protein Crosslinks in Vitro and in Vivo. Nature 1996, 382, 275–278. [CrossRef] [PubMed]Bradke, B.S.; Vashishth, D. N-Phenacylthiazolium Bromide Reduces Bone Fragility Induced by Nonenzymatic Glycation. PLoS ONE 2014, 9, e103199. [CrossRef] [PubMed]Kim, N.Y.; Goddard, T.N.; Sohn, S.; Spiegel, D.A.; Crawford, J.M. Biocatalytic Reversal of Advanced Glycation End Product Modification. Chembiochem 2019, 20, 2402–2410. [CrossRef]Bakris, G.L.; Bank, A.J.; Kass, D.A.; Neutel, J.M.; Preston, R.A.; Oparil, S. Advanced Glycation End-Product Cross-Link Breakers. A Novel Approach to Cardiovascular Pathologies Related to the Aging Process. Am. J. Hypertens. 2004, 17, 23S–30S. [CrossRef] [PubMed]Watson, A.M.D.; Soro-Paavonen, A.; Sheehy, K.; Li, J.; Calkin, A.C.; Koitka, A.; Rajan, S.N.; Brasacchio, D.; Allen, T.J.; Cooper, M.E.; et al. Delayed Intervention with AGE Inhibitors Attenuates the Progression of Diabetes-Accelerated Atherosclerosis in Diabetic Apolipoprotein E Knockout Mice. Diabetologia 2011, 54, 681–689. [CrossRef]Kranstuber, A.L.; Del Rio, C.; Biesiadecki, B.J.; Hamlin, R.L.; Ottobre, J.; Gyorke, S.; Lacombe, V.A. Advanced Glycation End Product Cross-Link Breaker Attenuates Diabetes-Induced Cardiac Dysfunction by Improving Sarcoplasmic Reticulum Calcium Handling. Front. Physiol. 2012, 3, 292. [CrossRef]Zhang, B.; He, K.; Chen, W.; Cheng, X.; Cui, H.; Zhong, W.; Li, S.; Wang, L. Alagebrium (ALT-711) Improves the Anti-Hypertensive Efficacy of Nifedipine in Diabetic-Hypertensive Rats. Hypertens. Res. 2014, 37, 901–907. [CrossRef]Susic, D.; Varagic, J.; Frohlich, E.D. Cardiovascular and Renal Effects of a Collagen Cross-Link Breaker (ALT 711) in Adult and Aged Spontaneously Hypertensive Rats. Am. J. Hypertens. 2004, 17, 328–333. [CrossRef]Dozio, E.; Vianello, E.; Bandera, F.; Longhi, E.; Brizzola, S.; Nebuloni, M.; Corsi Romanelli, M.M. Soluble Receptor for Advanced Glycation End Products: A Protective Molecule against Intramyocardial Lipid Accumulation in Obese Zucker Rats? Mediat. Inflamm. 2019, 2019. [CrossRef]Koyama, H.; Yamamoto, H.; Nishizawa, Y. RAGE and Soluble RAGE: Potential Therapeutic Targets for Cardiovascular Diseases. Mol. Med. 2007, 13, 625–635. [CrossRef]Xu, L.; Zang, P.; Feng, B.; Qian, Q. Atorvastatin Inhibits the Expression of RAGE Induced by Advanced Glycation End Products on Aortas in Healthy Sprague-Dawley Rats. Diabetol. Metab. Syndr. 2014, 6, 102. [CrossRef] [PubMed]Cuccurullo, C.; Iezzi, A.; Fazia, M.L.; De Cesare, D.; Di Francesco, A.; Muraro, R.; Bei, R.; Ucchino, S.; Spigonardo, F.; Chiarelli, F.; et al. Suppression of RAGE as a Basis of Simvastatin-Dependent Plaque Stabilization in Type 2 Diabetes. Arter. Thromb. Vasc. Biol. 2006, 26, 2716–2723. [CrossRef] [PubMed]Marx, N.; Walcher, D.; Ivanova, N.; Rautzenberg, K.; Jung, A.; Friedl, R.; Hombach, V.; de Caterina, R.; Basta, G.; Wautier, M.-P.; et al. Thiazolidinediones Reduce Endothelial Expression of Receptors for Advanced Glycation End Products. Diabetes 2004, 53, 2662–2668. [CrossRef]Sirtori, C.R. The Pharmacology of Statins. Pharm. Res. 2014, 88, 3–11. [CrossRef]Soccio, R.E.; Chen, E.R.; Lazar, M.A. Thiazolidinediones and the Promise of Insulin Sensitization in Type 2 Diabetes. Cell Metab. 2014, 20, 573–591. [CrossRef] [PubMed]. Chen, M.; Li, H.; Wang, G.; Shen, X.; Zhao, S.; Su, W. Atorvastatin Prevents Advanced Glycation End Products (AGEs)-Induced Cardiac Fibrosis via Activating Peroxisome Proliferator-Activated Receptor Gamma (PPAR-γ). Metabolism 2016, 65, 441–453. [CrossRef]Chiang, M.-C.; Cheng, Y.-C.; Nicol, C.J.; Lin, C.-H. The Neuroprotective Role of Rosiglitazone in Advanced Glycation End Product Treated Human Neural Stem Cells Is PPARgamma-Dependent. Int. J. Biochem. Cell Biol. 2017, 92, 121–133. [CrossRef]Sabbagh, M.N.; Agro, A.; Bell, J.; Aisen, P.S.; Schweizer, E.; Galasko, D. PF-04494700, an Oral Inhibitor of Receptor For Advanced Glycation End Products (RAGE), in Alzheimer’s Disease. Alzheimer. Dis. Assoc. Disord. 2011, 25, 206–212. [CrossRef] [PubMed]Burstein, A.H.; Grimes, I.; Galasko, D.R.; Aisen, P.S.; Sabbagh, M.; Mjalli, A.M.M. Effect of TTP488 in Patients with Mild to Moderate Alzheimer’s Disease. BMC Neurol. 2014, 14, 12. [CrossRef] [PubMed]Zong, H.; Ward, M.; Stitt, A.W. AGEs, RAGE, and Diabetic Retinopathy. Curr. Diab. Rep. 2011, 11, 244–252. [CrossRef]Chen, S.; Yin, L.; Xu, Z.; An, F.-M.; Liu, A.-R.; Wang, Y.; Yao, W.-B.; Gao, X.-D. Inhibiting Receptor for Advanced Glycation End Product (AGE) and Oxidative Stress Involved in the Protective Effect Mediated by Glucagon-like Peptide-1 Receptor on AGE Induced Neuronal Apoptosis. Neurosci. Lett. 2016, 612, 193–198. [CrossRef] [PubMed]Zhang, S.-S.; Wu, Z.; Zhang, Z.; Xiong, Z.-Y.; Chen, H.; Huang, Q.-B. Glucagon-like Peptide-1 Inhibits the Receptor for Advanced Glycation Endproducts to Prevent Podocyte Apoptosis Induced by Advanced Oxidative Protein Products. Biochem. Biophys. Res. Commun. 2017, 482, 1413–1419. [CrossRef] [PubMed]Dorecka, M.; Siemianowicz, K.; Francuz, T.; Garczorz, W.; Chyra, A.; Klych, A.; Romaniuk, W. Exendin-4 and GLP-1 Decreases Induced Expression of ICAM-1, VCAM-1 and RAGE in Human Retinal Pigment Epithelial Cells. Pharm. Rep. 2013, 65, 884–890. [CrossRef]Zhan, Y.; Sun, H.; Chen, H.; Zhang, H.; Sun, J.; Zhang, Z.; Cai, D. Glucagon-like Peptide-1 (GLP-1) Protects Vascular Endothelial Cells against Advanced Glycation End Products (AGEs) Induced Apoptosis. Med. Sci. Monit. 2012, 18, BR286–BR291. [CrossRef]Yi, B.; Hu, X.; Wen, Z.; Zhang, T.; Cai, Y. Exendin-4, a Glucagon-like Peptide-1 Receptor Agonist, Inhibits Hyperglycemia-induced Apoptosis in Myocytes by Suppressing Receptor for Advanced Glycation End Products Expression. Exp. Ther. Med. 2014, 8, 1185–1190. [CrossRef]Bolton, W.K.; Cattran, D.C.; Williams, M.E.; Adler, S.G.; Appel, G.B.; Cartwright, K.; Foiles, P.G.; Freedman, B.I.; Raskin, P.; Ratner, R.E.; et al. Randomized Trial of an Inhibitor of Formation of Advanced Glycation End Products in Diabetic Nephropathy. Am. J. Nephrol. 2004, 24, 32–40. [CrossRef]Suji, G.; Sivakami, S. DNA Damage by Free Radical Production by Aminoguanidine. Ann. N. Y. Acad. Sci. 2006, 1067, 191–199. [CrossRef]Tilton, R.G.; Chang, K.; Hasan, K.S.; Smith, S.R.; Petrash, J.M.; Misko, T.P.; Moore, W.M.; Currie, M.G.; Corbett, J.A.; McDaniel, M.L. Prevention of Diabetic Vascular Dysfunction by Guanidines. Inhibition of Nitric Oxide Synthase versus Advanced Glycation End-Product Formation. Diabetes 1993, 42, 221–232. [CrossRef]Sakata, K.; Hayakawa, M.; Yano, Y.; Tamaki, N.; Yokota, N.; Eto, T.; Watanabe, R.; Hirayama, N.; Matsuo, T.; Kuroki, K.; et al. Efficacy of Alogliptin, a Dipeptidyl Peptidase-4 Inhibitor, on Glucose Parameters, the Activity of the Advanced Glycation End Product (AGE) Receptor for AGE (RAGE) Axis and Albuminuria in Japanese Type 2 Diabetes. Diabetes Metab. Res. Rev. 2013, 29, 624–630. [CrossRef] [PubMed]Koyama, H.; Tanaka, S.; Monden, M.; Shoji, T.; Morioka, T.; Fukumoto, S.; Mori, K.; Emoto, M.; Shoji, T.; Fukui, M.; et al. Comparison of Effects of Pioglitazone and Glimepiride on Plasma Soluble RAGE and RAGE Expression in Peripheral Mononuclear Cells in Type 2 Diabetes: Randomized Controlled Trial (PioRAGE). Atherosclerosis 2014, 234, 329–334. [CrossRef]. Liu, J.-S.; Chuang, T.-J.; Chen, J.-H.; Lee, C.-H.; Hsieh, C.-H.; Lin, T.-K.; Hsiao, F.-C.; Hung, Y.-J. Cilostazol Attenuates the Severity of Peripheral Arterial Occlusive Disease in Patients with Type 2 Diabetes: The Role of Plasma Soluble Receptor for Advanced Glycation End-Products. Endocrine 2015, 49, 703–710. [CrossRef] [PubMed]Peng, Y.; Park, H.-S.; Tang, L.A.; Horwitz, N.; Lin, L. Generation of SRAGEhigh Transgenic Mice to Study Inflammaging. Front. Biosci. 2019, 24, 555–563.Wang, B.-J.; Qian, L.; Li, J.; Wang, F.; Yang, Q.-L.; Li, G.; Liang, Y.-L.; Guo, Y.-H. SRAGE Plays a Role as a Protective Factor in the Development of PCOS by Inhibiting Inflammation. Gynecol. Endocrinol. 2020, 36, 148–151. [CrossRef]Koetsier, M.; Nur, E.; Chunmao, H.; Lutgers, H.L.; Links, T.P.; Smit, A.J.; Rakhorst, G.; Graaff, R. Skin Color Independent Assessment of Aging Using Skin Autofluorescence. Opt. Express 2010, 18, 14416–14429. [CrossRef]ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf4510402https://bonga.unisimon.edu.co/bitstreams/cc9e34f9-cb25-420e-a331-99f2e00f25b4/download61fa8056086cf684e1b0b7158059570aMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/afc6c3d1-da2b-497e-b10c-4d3709047dc8/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/4e5c2bc2-7a0f-4420-8a21-0adff7c251f1/download733bec43a0bf5ade4d97db708e29b185MD53TEXTAGeP_New-clinical-and-molecular-perspectives.pdf.txtAGeP_New-clinical-and-molecular-perspectives.pdf.txtExtracted texttext/plain117877https://bonga.unisimon.edu.co/bitstreams/9ce1396f-31e1-440a-80b2-797e6a6efff7/download5f75f077b53454b87956e2ddc7090fa6MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain100528https://bonga.unisimon.edu.co/bitstreams/33a67fc3-df54-41f0-ae5b-65b8f12b9c4f/downloadaeceb49a76e57876e403f3f80369f3a2MD56THUMBNAILAGeP_New-clinical-and-molecular-perspectives.pdf.jpgAGeP_New-clinical-and-molecular-perspectives.pdf.jpgGenerated Thumbnailimage/jpeg22508https://bonga.unisimon.edu.co/bitstreams/a3e90461-bfa0-45a5-86cf-8a04974fc443/download28843b1c380f34e244d9b2a5cb82b27dMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5773https://bonga.unisimon.edu.co/bitstreams/2e817a78-9a1c-4c04-96cb-a61c28d4bb98/download8bce14fb97b59b277e69aa33ac67e3daMD5720.500.12442/8360oai:bonga.unisimon.edu.co:20.500.12442/83602024-08-14 21:53:12.873http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u