Artificial intelligence assisted Mid-infrared laser spectroscopy in situ detection of petroleum in soils
A simple, remote-sensed method of detection of traces of petroleum in soil combining artificial intelligence (AI) with mid-infrared (MIR) laser spectroscopy is presented. A portable MIR quantum cascade laser (QCL) was used as an excitation source, making the technique amenable to field applications....
- Autores:
-
Galán-Freyle, Nataly J.
Ospina-Castro, María L.
Medina-González, Alberto R.
Villarreal-González, Reynaldo
Hernández-Rivera, Samuel P.
Pacheco-Londoño, Leonardo C.
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/4758
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/4758
- Palabra clave:
- Mid-infrared (MIR) laser spectroscopy
Quantum cascade lasers (QCLs)
Artificial intelligence (AI)
Chemometrics
Multivariate analysis
Petroleum
Soil
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_a6e7a2c6b2bbefb628e91c822a70550b |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/4758 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Artificial intelligence assisted Mid-infrared laser spectroscopy in situ detection of petroleum in soils |
title |
Artificial intelligence assisted Mid-infrared laser spectroscopy in situ detection of petroleum in soils |
spellingShingle |
Artificial intelligence assisted Mid-infrared laser spectroscopy in situ detection of petroleum in soils Mid-infrared (MIR) laser spectroscopy Quantum cascade lasers (QCLs) Artificial intelligence (AI) Chemometrics Multivariate analysis Petroleum Soil |
title_short |
Artificial intelligence assisted Mid-infrared laser spectroscopy in situ detection of petroleum in soils |
title_full |
Artificial intelligence assisted Mid-infrared laser spectroscopy in situ detection of petroleum in soils |
title_fullStr |
Artificial intelligence assisted Mid-infrared laser spectroscopy in situ detection of petroleum in soils |
title_full_unstemmed |
Artificial intelligence assisted Mid-infrared laser spectroscopy in situ detection of petroleum in soils |
title_sort |
Artificial intelligence assisted Mid-infrared laser spectroscopy in situ detection of petroleum in soils |
dc.creator.fl_str_mv |
Galán-Freyle, Nataly J. Ospina-Castro, María L. Medina-González, Alberto R. Villarreal-González, Reynaldo Hernández-Rivera, Samuel P. Pacheco-Londoño, Leonardo C. |
dc.contributor.author.none.fl_str_mv |
Galán-Freyle, Nataly J. Ospina-Castro, María L. Medina-González, Alberto R. Villarreal-González, Reynaldo Hernández-Rivera, Samuel P. Pacheco-Londoño, Leonardo C. |
dc.subject.eng.fl_str_mv |
Mid-infrared (MIR) laser spectroscopy Quantum cascade lasers (QCLs) Artificial intelligence (AI) Chemometrics Multivariate analysis Petroleum Soil |
topic |
Mid-infrared (MIR) laser spectroscopy Quantum cascade lasers (QCLs) Artificial intelligence (AI) Chemometrics Multivariate analysis Petroleum Soil |
description |
A simple, remote-sensed method of detection of traces of petroleum in soil combining artificial intelligence (AI) with mid-infrared (MIR) laser spectroscopy is presented. A portable MIR quantum cascade laser (QCL) was used as an excitation source, making the technique amenable to field applications. The MIR spectral region is more informative and useful than the near IR region for the detection of pollutants in soil. Remote sensing, coupled with a support vector machine (SVM) algorithm, was used to accurately identify the presence/absence of traces of petroleum in soil mixtures. Chemometrics tools such as principal component analysis (PCA), partial least square-discriminant analysis (PLS-DA), and SVM demonstrated the e ectiveness of rapidly di erentiating between di erent soil types and detecting the presence of petroleum traces in di erent soil matrices such as sea sand, red soil, and brown soil. Comparisons between results of PLS-DA and SVM were based on sensitivity, selectivity, and areas under receiver-operator curves (ROC). An innovative statistical analysis method of calculating limits of detection (LOD) and limits of decision (LD) from fits of the probability of detection was developed. Results for QCL/PLS-DA models achieved LOD and LD of 0.2% and 0.01% for petroleum/soil, respectively. The superior performance of QCL/SVM models improved these values to 0.04% and 0.003%, respectively, providing better identification probability of soils contaminated with petroleum. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-02-17T22:51:53Z |
dc.date.available.none.fl_str_mv |
2020-02-17T22:51:53Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.eng.fl_str_mv |
article |
dc.identifier.issn.none.fl_str_mv |
20763417 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/4758 |
dc.identifier.doi.none.fl_str_mv |
10.3390/app10041319 |
identifier_str_mv |
20763417 10.3390/app10041319 |
url |
https://hdl.handle.net/20.500.12442/4758 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
dc.publisher.eng.fl_str_mv |
MDPI |
dc.source.eng.fl_str_mv |
Applied Sciences |
dc.source.spa.fl_str_mv |
Vol. 10, N° 4 (2020) |
institution |
Universidad Simón Bolívar |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/ce879783-937c-44cc-9e47-5cf7a52b89f0/download https://bonga.unisimon.edu.co/bitstreams/cd9896b0-f519-45ab-9537-3e48b4c64ef6/download https://bonga.unisimon.edu.co/bitstreams/aa1fc6c0-0f10-4551-a880-9b8ca41fa4d7/download https://bonga.unisimon.edu.co/bitstreams/6dd8ecb8-3326-4c90-8acd-11025d95c559/download https://bonga.unisimon.edu.co/bitstreams/1dc8df59-3845-4191-a79a-ea459355b4b1/download https://bonga.unisimon.edu.co/bitstreams/1eb586ba-1e55-46d8-9c2d-1c3fbc73d391/download https://bonga.unisimon.edu.co/bitstreams/030e2bb1-c8b5-40fc-9895-0ef17a4476d5/download |
bitstream.checksum.fl_str_mv |
a8b16ad095e0842dd47866f05f9d41b7 4460e5956bc1d1639be9ae6146a50347 733bec43a0bf5ade4d97db708e29b185 f025a6c57b1896d68b44650dd1c4a0f5 ad8ab7cfdf28bc3bcb498725ee47522b 4f68eaf7542db4f365b6e78c4d28d74b 1fcd0b2c03ed256aa66a2e7454fb83e4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076163760324608 |
spelling |
Galán-Freyle, Nataly J.3fcf4986-14a3-49f8-9db0-165bd9e7b51fOspina-Castro, María L.59a0228b-703d-410b-8af1-d64112bcb200Medina-González, Alberto R.389640d5-9a7a-4a8b-9d1c-e80b3d8f9dc1Villarreal-González, Reynaldo0b64215d-5c8b-4e4d-b796-746ffe6b54feHernández-Rivera, Samuel P.ead5cd23-9551-47a2-962c-4a2b7f82539bPacheco-Londoño, Leonardo C.fa7d491b-ee0d-46b6-99d0-ce4a9b8c87632020-02-17T22:51:53Z2020-02-17T22:51:53Z202020763417https://hdl.handle.net/20.500.12442/475810.3390/app10041319A simple, remote-sensed method of detection of traces of petroleum in soil combining artificial intelligence (AI) with mid-infrared (MIR) laser spectroscopy is presented. A portable MIR quantum cascade laser (QCL) was used as an excitation source, making the technique amenable to field applications. The MIR spectral region is more informative and useful than the near IR region for the detection of pollutants in soil. Remote sensing, coupled with a support vector machine (SVM) algorithm, was used to accurately identify the presence/absence of traces of petroleum in soil mixtures. Chemometrics tools such as principal component analysis (PCA), partial least square-discriminant analysis (PLS-DA), and SVM demonstrated the e ectiveness of rapidly di erentiating between di erent soil types and detecting the presence of petroleum traces in di erent soil matrices such as sea sand, red soil, and brown soil. Comparisons between results of PLS-DA and SVM were based on sensitivity, selectivity, and areas under receiver-operator curves (ROC). An innovative statistical analysis method of calculating limits of detection (LOD) and limits of decision (LD) from fits of the probability of detection was developed. Results for QCL/PLS-DA models achieved LOD and LD of 0.2% and 0.01% for petroleum/soil, respectively. The superior performance of QCL/SVM models improved these values to 0.04% and 0.003%, respectively, providing better identification probability of soils contaminated with petroleum.pdfengMDPIAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Applied SciencesVol. 10, N° 4 (2020)Mid-infrared (MIR) laser spectroscopyQuantum cascade lasers (QCLs)Artificial intelligence (AI)ChemometricsMultivariate analysisPetroleumSoilArtificial intelligence assisted Mid-infrared laser spectroscopy in situ detection of petroleum in soilsarticlearticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Aislabie, J.M.; Balks, M.R.; Foght, J.M.;Waterhouse, E.J. Hydrocarbon Spills on Antarctic Soils: Effects and Management. Environ. Sci. Technol. 2004, 38, 1265–1274.James, W.W.; Bob, K.L.; Randall, J.C. Exposure Assessment Modeling for Hydrocarbon Spills into the Subsurface. In Transport and Remediation of Subsurface Contaminants; American Chemical Society: Washington, DC, USA, 1992; Volume 491, pp. 217–231.Lehikoinen, A.; Hanninen, M.; Storgárd, J.; Luoma, E.; Mäntyniemi, S.; Kuikka, S. A Bayesian Network for Assessing the Collision Induced Risk of an Oil Accident in the Gulf of Finland. Environ. Sci. Technol. 2015, 49, 5301–5309.Yim, U.H.; Kim, M.; Ha, S.Y.; Kim, S.; Shim,W.J. Oil Spill Environmental Forensics: The Hebei Spirit Oil Spill Case. Environ. Sci. Technol. 2012, 46, 6431–6437.Li, Y.; Li, B. Enzymatic Activities in Soils Contaminated with Diesel Oil. In Proceedings of the 2010 International Conference on Digital Manufacturing and Automation (ICDMA), Changsha, China, 18–20 December 2010; pp. 659–662.Liang, Q.; Zhang, B.; Wu, X. Gulf of Mexico oil spill impact on beach soil: UWB radars-based approach. In Proceedings of the 2012 IEEE GlobecomWorkshops (GC Wkshps), Anaheim, CA, USA, 3–7 December 2012; pp. 1445–1449.Dahish, A.S.; Ahmad, A. An application of Geographical Information System and Remote Sensing techniques for detection of oil spill. In Proceedings of the 17th International Conference on Geoinformatics, Fairfax, VA, USA, 12–14 August 2009; pp. 1–4.Zhang, P.; Hu, X.; Wang, Y.; Sun, T. Simultaneous Determination of 15 Organochlorine Pesticide Residues in Soil by GC/MS/MS. In Proceedings of the 2nd International Conference on Bioinformatics and Biomedical Engineering, ICBBE 2008, Shanghai, China, 16–18 May 2008; pp. 4113–4116.Schade, W.; Bublitz, J. On-Site Laser Probe for the Detection of Petroleum Products in Water and Soil. Environ. Sci. Technol. 1996, 30, 1451–1458.Syunyaev, R.Z.; Balabin, R.M.; Akhatov, I.S.; Safieva, J.O. Adsorption of Petroleum Asphaltenes onto Reservoir Rock Sands Studied by Near-Infrared (NIR) Spectroscopy. Energy Fuels 2009, 23, 1230–1236.Pelta, R.; Ben-Dor, E. The Potential of Multi- and HyperSpectral Air- and Spaceborne Sensors to Detect Crude Oil Hydrocarbon in Soils Long after a Contamination Event. Appl. Sci. 2019, 9, 5151.Adegboye, M.A.; Fung,W.-K.; Karnik, A. Recent Advances in Pipeline Monitoring and Oil Leakage Detection Technologies: Principles and Approaches. Sensors 2019, 19, 2548.Pelta, R.; Carmon, N.; Ben-Dor, E. A machine learning approach to detect crude oil contamination in a real scenario using hyperspectral remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101901.Pelta, R.; Ben-Dor, E. Assessing the detection limit of petroleum hydrocarbon in soils using hyperspectral remote-sensing. Remote Sens. Environ. 2019, 224, 145–153.Chernaya, L.; Gaponov, S. The detection of petroleum floods on the ground surface by means of passive location in mm wavelength range. In Proceedings of the Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and SubmillimeterWaves (IEEE Cat. No.04EX828), Kharkov, Ukraine, 21–26 June 2004; Volume 852, pp. 21–26.Falate, R.; Kamikawachi, R.C.; Fabris, J.L.; Müller, M.; Kalinowski, H.J.; Ferri, F.; Czelusniak, L.K. Petroleum hydrocarbon detection with long period gratings. In Proceedings of the IEEE 2003 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference—IMOC 2003, Foz do Iguacu, Brazil, 20–23 September 2003; Volume 2, pp. 907–910.Zhang, J.; Zeng, Z.; Hao, F.; Jin, S. A recognition method of petroleum pipeline safety-detection events using the largest lyapunov exponent and wavelet threshold de-noising. In Proceedings of the IEEE Instruments (ICEMI), 9th International Conference on Electronic Measurement & Instruments, Beijing, China, 16–19 August 2009; pp. 1–140.Wang, T.; Zhai, Y.; Liu, C.; Zhang, Y. Research of sensor fault detection based on the residual flitered for the oilfield petroleum exploited system. In Proceedings of the IEEE 25th Chinese Control and Decision Conference (CCDC), Guiyang, China, 25–27 May 2013; pp. 2714–2717.Chen, C.T. Understanding the fate of petroleum hydrocarbons in the subsurface environment. J. Chem. Educ. 1992, 69, 357.Youngless, T.L.; Swansiger, J.T.; Danner, D.A.; Greco, M. Mass spectral characterization of petroleum dyes, tracers, and additives. Anal. Chem. 1985, 57, 1894–1902.Anza, M.; Salazar, O.; Epelde, L.; Becerril, J.M.; Alkorta, I.; Garbisu, C. Remediation of Organically Contaminated Soil Through the Combination of Assisted Phytoremediation and Bioaugmentation. Appl. Sci. 2019, 9, 4757.Yu, Y.; Liu, Y.; Wu, L. Sorption and degradation of pharmaceuticals and personal care products (PPCPs) in soils. Environ. Sci. Pollut. Res. 2013, 20, 4261–4267.Velásquez-Arias, J.A. Contamination of soil and water by hydrocarbons in Colombia. Analysis of phytoremediation as a biotechnology strategy for recovery. Johana Andrea Velásquez Arias 2017, 8, 151–167.Gallagher, N.B.; Blake, T.A.; Gassman, P.L. Application of extended inverse scatter correctionto mid-infrared reflectance spectra of soil. J. Cheom. 2005, 19, 271–281.Pacheco-Londoño, L.C.; Castro-Suarez, J.R.; Hernández-Rivera, S.P. Detection of Nitroaromatic and Peroxide Explosives in Air Using Infrared Spectroscopy: QCL and FTIR. Adv. Opt. Technol. 2013, 2013, 1–8.Hugger, S.; Fuchs, F.; Jarvis, J.; Kinzer, M.; Yang, Q.K.; Driad, R.; Aidam, R.;Wagner, J. Broadband-tunable external-cavity quantum cascade lasers for the spectroscopic detection of hazardous substances. Quantum Sens. Nanophotonic Devices X 2013, 8631, 645–671.Hvozdara, L.; Pennington, N.; Kraft, M.; Karlowatz, M.; Mizaikoff, B. Quantum cascade lasers for mid-infrared spectroscopy. Vib. Spectrosc. 2002, 30, 53–58.Lüdeke, S.; Pfeifer, M.; Fischer, P. Quantum-Cascade Laser-Based Vibrational Circular Dichroism. J. Am. Chem. Soc. 2011, 133, 5704–5707.Narayanan, R.; Green, S.; Alexander, D.R. Mid-infrared backscatter characteristics of various benchmark soils. IEEE Trans. Geosci. Remote Sens. 1992, 30, 516–530.Castro-Suarez, J.R.; Pacheco-Londoño, L.C.; Aparicio-Bolaño, J.; Hernández-Rivera, S.P. Active Mode Remote Infrared Spectroscopy Detection of TNT and PETN on Aluminum Substrates. J. Spectrosc. 2017, 2017, 1–11.Galán-Freyle, N.J.; Pacheco-Londoño, L.C.; Román-Ospino, A.D.; Hernandez-Rivera, S.P. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations. Appl. Spectrosc. 2016, 70, 1511–1519.Galán-Freyle, N.J.; Pacheco-Londõno, L.C.; Figueroa-Navedo, A.M.; Hernandez-Rivera, S.P. Standoff Detection of Highly Energetic Materials Using Laser-Induced Thermal Excitation of Infrared Emission. Appl. Spectrosc. 2015, 69, 535–544.Pacheco-Londoño, L.C.; Ortiz-Rivera, W.; Primera-Pedrozo, O.M.; Hernández-Rivera, S.P. Vibrational spectroscopy standoff detection of explosives. Anal. Bioanal. Chem. 2009, 395, 323–335.Pacheco-Londoño, L.C.; Castro-Suarez, J.R.; Aparicio-Bolaños, J.A.; Hernández-Rivera, S.P. Angular dependence of source-target-detector in active mode standoff infrared detection. Proc. SPIE 2013, 8711, 871108.Suter, J.D.; Bernacki, B.; Phillips, M.C. Spectral and angular dependence of mid-infrared diffuse scattering from explosives residues for standoff detection using external cavity quantum cascade lasers. Appl. Phys. B 2012, 108, 965–974.Castro-Suarez, J.R.; Pacheco-Londoño, L.C.; Vélez-Reyes, M.; Diem, M.; Tague, T.J.; Hernandez-Rivera, S.P. FT-IR Standoff Detection of Thermally Excited Emissions of Trinitrotoluene (TNT) Deposited on Aluminum Substrates. Appl. Spectrosc. 2013, 67, 181–186.Chan, C.W.; Huang, G.H. Artificial intelligence for management and control of pollution minimization and mitigation processes. Eng. Appl. Artif. Intell. 2003, 16, 75–90.Boracchi, G.; Iliadis, L.; Jayne, C. Engineering Applications of Neural Networks. In Proceedings of the 18th International Conference, EANN 2017, Athens, Greece, 25–27 August 2017.López-De-Ipiña, D.; Lorido, T.; López, U. BlindShopping: Enabling accessible shopping for visually impaired people through mobile technologies. Post Quantum Cryptogr. 2011, 6719, 266–270.Tekin, E.; Coughlan, J.M. An algorithm enabling blind users to find and read barcodes. In Proceedings of the IEEE Workshop on Applications of Computer Vision (WACV), Snowbird, UT, USA, 7–8 December 2009; Volume 2009, pp. 1–8.Pan, H.; Yi, C.; Tian, Y. A primary travelling assistant system of bus detection and recognition for visually impaired people. In Proceedings of the IEEE International Conference on Multimedia and Expo Workshops (ICMEW), San Jose, CA, USA, 15–19 July 2013; pp. 1–6.Tang, T.J.J.; Lui, W.L.D.; Li, W.H. Plane-Based Detection of Staircases Using Inverse Depth; Browne, W., Ed.; Australian Robotics and Automation Association: Sydney, Australia, 2012; pp. 1–10.Chen, X.; Yuille, A.L. Detecting and reading text in natural scenes. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Washington, DC, USA, 27 June–2 July 2004; Volume 2, pp. 366–373.Yang, X.; Tian, Y. Robust door detection in unfamiliar environments by combining edge and corner features. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), San Francisco, CA, USA, 13–18 June 2010; pp. 57–64.Wang, S.; Tian, Y. Camera-Based Signage Detection and Recognition for Blind Persons. In Computers Helping People with Special Needs; Miesenberger, K., Karshmer, A., Penaz, P., Zagler,W., Eds.; ICCHP 2012, Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2012; Volume 7383, pp. 17–24.Bazi, Y.; Alhichri, H.; Alajlan, N.; Melgani, F. Scene Description for Visually Impaired People with Multi-Label Convolutional SVM Networks. Appl. Sci. 2019, 9, 5062.Pardo, M.; Sberveglieri, G. Classification of electronic nose data with support vector machines. Sens. Actuators B Chem. 2005, 107, 730–737.Figueroa-Navedo, A.M.; Galan-Freyle, N.J.; Pacheco-Londoño, L.C.; Hernández-Rivera, S.P. Chemometrics-enhanced laser-induced thermal emission detection of PETN and other explosives on various substrates. J. Chemom. 2015, 29, 329–337.Castro-Suarez, J.R.; Hidalgo-Santiago, M.; Hernández-Rivera, S.P. Detection of Highly Energetic Materials on Non-Reflective Substrates Using Quantum Cascade Laser Spectroscopy. Appl. Spectrosc. 2015, 69, 1023–1035.Morales-Bautista, C.; Lobato, C.; Flores-Jiménez, J.; Mendez-Olán, C. Changes in the physical and chemical properties of a soil due to a restoration process applied to a spill of hydrocarbon. Acta Univ. Multidiscip. Sci. J. 2019, 29, 1–14.Paíga, P.; Mendes, L.; Albergaria, J.T.; Delerue-Matos, C.M. Determination of total petroleum hydrocarbons in soil from different locations using infrared spectrophotometry and gas chromatography. Chem. Pap. 2012, 66, 711–721.Pacheco-Londoño, L.C.; Aparicio-Bolaño, J.A.; Galán-Freyle, N.J.; Román-Ospino, A.D.; Ruiz-Caballero, J.L.; Hernández-Rivera, S.P. Classical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics. Appl. Spectrosc. 2019, 73, 17–29.Cawley, G.C. Leave-One-Out Cross-Validation Based Model Selection Criteria for Weighted LS-SVMs. In Proceedings of the IEEE International Joint Conference on Neural Network Proceedings, Vancouver, BC, Canada, 16–21 July 2006; pp. 1661–1668.Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API design for machine learning software: Experiences from the scikit-learn project. In Proceedings of the European Conference on Machine Learning and Principles and Practices of Knowledge Discovery in Databases, Prague, Czech Republic, 23–27 September 2013.Janik, L.J.; Merry, R.H.; Skjemstad, J.O. Can mid infrared diffuse reflectance analysis replace soil extractions? Aust. J. Exp. Agric. 1998, 38, 681–696.Nguyen, T.; Janik, L.; Raupach, M. Diffuse reflectance infrared fourier transform (DRIFT) spectroscopy in soil studies. Soil Res. 1991, 29, 49–67.Calderón, F.J.; Reeves, J.B.; Collins, H.P.; Paul, E.A. Chemical Differences in Soil Organic Matter Fractions Determined by Diffuse-Reflectance Mid-Infrared Spectroscopy. Soil Sci. Soc. Am. J. 2011, 75, 568.Xia, Q.; Yuan, L.-M.; Chen, X.; Meng, L.; Huang, G. Analysis of Methanol Gasoline byATR-FT-IR Spectroscopy. Appl. Sci. 2019, 9, 5336.Ault, A.P.; Pomeroy, R. Quantitative Investigations of Biodiesel Fuel Using Infrared Spectroscopy: An Instrumental Analysis Experiment for Undergraduate Chemistry Students. J. Chem. Educ. 2012, 89, 243–247.Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry; Prentice Hall Pearson: Harlow, UK, 2010.Guzmán, M.F.S.; Gómez, L.M.T.; Ruiz, D.D.P. Impacto de los derrames de crudo en las propiedades mecánicas de suelos arenosos. Rev. Cient. General José María Córdova 2013, 11, 233.Trujillo-Narcía, A.; Rivera-Cruz, M.; Lagunes-Espinoza, L.; Palma-López, D.; Sánchez-Soto, S.; Ramírez-Valverde, G. Parámetros biológicos de la restauración de suelos contaminados por petróleo crudo. Ecosistemas y Recur. Agropecu. 2014, 1, 107–122.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf2481257https://bonga.unisimon.edu.co/bitstreams/ce879783-937c-44cc-9e47-5cf7a52b89f0/downloada8b16ad095e0842dd47866f05f9d41b7MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/cd9896b0-f519-45ab-9537-3e48b4c64ef6/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/aa1fc6c0-0f10-4551-a880-9b8ca41fa4d7/download733bec43a0bf5ade4d97db708e29b185MD53TEXTArtificial_Intelligence_Assisted_Mid-Infrared_Laser.pdf.txtArtificial_Intelligence_Assisted_Mid-Infrared_Laser.pdf.txtExtracted texttext/plain70852https://bonga.unisimon.edu.co/bitstreams/6dd8ecb8-3326-4c90-8acd-11025d95c559/downloadf025a6c57b1896d68b44650dd1c4a0f5MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain74504https://bonga.unisimon.edu.co/bitstreams/1dc8df59-3845-4191-a79a-ea459355b4b1/downloadad8ab7cfdf28bc3bcb498725ee47522bMD56THUMBNAILArtificial_Intelligence_Assisted_Mid-Infrared_Laser.pdf.jpgArtificial_Intelligence_Assisted_Mid-Infrared_Laser.pdf.jpgGenerated Thumbnailimage/jpeg1579https://bonga.unisimon.edu.co/bitstreams/1eb586ba-1e55-46d8-9c2d-1c3fbc73d391/download4f68eaf7542db4f365b6e78c4d28d74bMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5451https://bonga.unisimon.edu.co/bitstreams/030e2bb1-c8b5-40fc-9895-0ef17a4476d5/download1fcd0b2c03ed256aa66a2e7454fb83e4MD5720.500.12442/4758oai:bonga.unisimon.edu.co:20.500.12442/47582024-08-14 21:54:27.283http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |