Optimisation algorithms for improvement of a multihead weighing process

Mathematical optimisation is widely used to find the optimal value for an objective function, subject to constraints that try to simulate reality, and is fundamental to improving industrial processes. In this paper, we compare different optimisation approaches to solve the packaging problem in multi...

Full description

Autores:
Pulido Rojano, Alexander
García Díaz, J. Carlos
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/4497
Acceso en línea:
https://hdl.handle.net/20.500.12442/4497
Palabra clave:
Optimisation
Mathematical modelling
Exhaustive search
Reduction of variability
Process improvement
Packaging
Multihead weighing process
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_a42beab750efff5a36da16315be17e10
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/4497
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Optimisation algorithms for improvement of a multihead weighing process
title Optimisation algorithms for improvement of a multihead weighing process
spellingShingle Optimisation algorithms for improvement of a multihead weighing process
Optimisation
Mathematical modelling
Exhaustive search
Reduction of variability
Process improvement
Packaging
Multihead weighing process
title_short Optimisation algorithms for improvement of a multihead weighing process
title_full Optimisation algorithms for improvement of a multihead weighing process
title_fullStr Optimisation algorithms for improvement of a multihead weighing process
title_full_unstemmed Optimisation algorithms for improvement of a multihead weighing process
title_sort Optimisation algorithms for improvement of a multihead weighing process
dc.creator.fl_str_mv Pulido Rojano, Alexander
García Díaz, J. Carlos
dc.contributor.author.none.fl_str_mv Pulido Rojano, Alexander
García Díaz, J. Carlos
dc.subject.eng.fl_str_mv Optimisation
Mathematical modelling
Exhaustive search
Reduction of variability
Process improvement
Packaging
Multihead weighing process
topic Optimisation
Mathematical modelling
Exhaustive search
Reduction of variability
Process improvement
Packaging
Multihead weighing process
description Mathematical optimisation is widely used to find the optimal value for an objective function, subject to constraints that try to simulate reality, and is fundamental to improving industrial processes. In this paper, we compare different optimisation approaches to solve the packaging problem in multihead weighing machines. In this problem, each package is made up from the loads in a subset of the multihead weigher’s hoppers. The total weight of the packed product must be as close to a specified target weight as possible. We designed and evaluated a set of algorithms for this problem, considering both single-objective and bi-objective optimisation criteria. A new criterion for creating the packages is considered, and a different way of filling of the hoppers is studied with the aim of reducing process variability. Numerical experiments considering both a set of real data and the most important process performance parameters show the usefulness of our study.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-01-13T22:10:18Z
dc.date.available.none.fl_str_mv 2020-01-13T22:10:18Z
dc.date.issued.none.fl_str_mv 2020
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv info:eu-repo/semantics/submittedVersion
http://purl.org/coar/version/c_71e4c1898caa6e32
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
status_str submittedVersion
dc.identifier.isbn.none.fl_str_mv 17466474
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/4497
identifier_str_mv 17466474
url https://hdl.handle.net/20.500.12442/4497
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.eng.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.eng.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.eng.fl_str_mv Inderscience Enterprises
dc.source.eng.fl_str_mv International Journal of Productivity and Quality Management
dc.source.none.fl_str_mv Vol. 29, No. 1 (2020)
institution Universidad Simón Bolívar
dc.source.uri.none.fl_str_mv 10.1504/IJPQM.2019.10019239
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/42e2667a-f977-4400-8d7a-24b46935cbec/download
https://bonga.unisimon.edu.co/bitstreams/64b8202d-22e3-4bfb-b3b2-605b6d3b6317/download
https://bonga.unisimon.edu.co/bitstreams/06aa9203-3577-4f47-8978-4a9a4edb038f/download
https://bonga.unisimon.edu.co/bitstreams/e9534980-b275-43a1-9fae-19b8cdf6463e/download
https://bonga.unisimon.edu.co/bitstreams/7fbc25e4-ff6c-42e7-ac77-4686ff214f25/download
https://bonga.unisimon.edu.co/bitstreams/41146d24-c6e6-4654-8bb6-f0907153ed44/download
https://bonga.unisimon.edu.co/bitstreams/ed0b7f52-ba9a-487c-be52-9739a0f84609/download
bitstream.checksum.fl_str_mv 7bef8001096c047b1fa82a519c8a44dd
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
a67051f240a17e7e4b12123df176a3d4
c46930f90cac9c32c79f731116d1b009
fbeeebd0e0be0adb0e067c751eeaad9b
5954247f5f6beee74be78d20ea66f925
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076096210010112
spelling Pulido Rojano, Alexander4aaf5559-7d70-49b0-9cf2-876bb0211d9dGarcía Díaz, J. Carlos96171449-f2f0-4e00-90d6-a620c29495f22020-01-13T22:10:18Z2020-01-13T22:10:18Z202017466474https://hdl.handle.net/20.500.12442/4497Mathematical optimisation is widely used to find the optimal value for an objective function, subject to constraints that try to simulate reality, and is fundamental to improving industrial processes. In this paper, we compare different optimisation approaches to solve the packaging problem in multihead weighing machines. In this problem, each package is made up from the loads in a subset of the multihead weigher’s hoppers. The total weight of the packed product must be as close to a specified target weight as possible. We designed and evaluated a set of algorithms for this problem, considering both single-objective and bi-objective optimisation criteria. A new criterion for creating the packages is considered, and a different way of filling of the hoppers is studied with the aim of reducing process variability. Numerical experiments considering both a set of real data and the most important process performance parameters show the usefulness of our study.pdfengInderscience EnterprisesAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2International Journal of Productivity and Quality ManagementVol. 29, No. 1 (2020)10.1504/IJPQM.2019.10019239OptimisationMathematical modellingExhaustive searchReduction of variabilityProcess improvementPackagingMultihead weighing processOptimisation algorithms for improvement of a multihead weighing processarticleinfo:eu-repo/semantics/submittedVersionhttp://purl.org/coar/version/c_71e4c1898caa6e32http://purl.org/coar/resource_type/c_6501Barreiro, J.J., González, C. and Salicrú, M. (1998) ‘Optimization of multiweighing packing proceeding’, Top, Vol. 6, No. 1, pp.37–44.Beretta, A. and Semeraro, Q. (2012) ‘On a RSM approach to the multihead weigher configuration’, in the 11th biennial Conference on Engineering Systems Design and Analysis (ASME 2012), Nantes, France, pp.225–233.Beretta, A., Semeraro, Q. and del Castillo, E. (2016) ‘On the multihead weigher machine setup problem’, Packaging Technology and Science, Vol. 29, No. 3, pp.175–188.Bierlaire, M. (2015) Optimization: Principles and Algorithms, 1st ed., EPFL Press, Lausana.Blum, C., Blesa-Aguilera, M.J., Roli, A. and Sampels, M. (2008) Hybrid Metaheuristics: an Emerging Approach to Optimization, Springer-Verlag, Berlin.Cook, W., Cunningham, W., Pulleyblank, W. and Schrijver, A. (1998) Combinatorial Optimization, John Wiley and Sons, New York.del Castillo, E., Beretta, A. and Semeraro, Q. (2017) ‘Optimal setup of a multihead weighing machine’, European Journal of Operational Research, Vol. 259, No. 1, pp.384–393.Duarte, A., Pantrigo, J.J. and Gallego Carrillo, M. (2007) Metahuerísticas, Dykinson, Madrid.Ehrgott, M. (2005) Multicriteria Optimization, 2nd ed., Springer, Berlin.Erdogdu, F. (2009) Optimization in Food Engineering, Taylor and Francis, London.García-Díaz, J.C. and Pulido-Rojano, A. (2017) ‘Monitoring and control of the multihead weighing process through a modified control chart’, DYNA., Vol. 84, No. 200, pp.135–142.García-Díaz, J.C., Pulido-Rojano, A. and Giner-Bosch, V. (2017) ‘Bi-objective optimization of a multihead weighing process’, European Journal Industrial Engineering, Vol. 11, No. 3, pp.403–423.Garey, M.R. and Johnson, D.S. (1979) Computers and Intractability: a Guide to the Theory of NP-Completeness, WH Freeman and Company, New York.Imahori, S., Karuno, Y., Nagamochi, H. and Wang, X. (2011) ‘Kansei engineering humans and computers: efficient dynamic programming algorithms for combinatorial food packing problems’, International Journal of Biometrics, Vol. 3, No. 3, pp.228–245.Imahori, S., Karuno, Y., Nishizaki, R. and Yoshimoto, Y. (2012) ‘Duplex and quasi-duplex operations in automated food packing systems’, in 2012 IEEE/SICE International Symposium on System Integration (SII), Fukuoka, Japan, pp.810–815.Karuno, Y. and Saito, R. (2017) ‘Heuristic algorithms with rounded weights for a combinatorial food packing problem’, Journal of Advanced Mechanical Design, System, and Manufacturing, Vol. 11, No. 1, DOI: https://doi.org/10.1299/jamdsm.2017jamdsm0003.Karuno, Y. and Tateishi, K. (2014) ‘Improved heuristics with data rounding for combinatorial food packing problems’, in IEEE 2014 7th International Conference on Service-Oriented Computing and Applications, Matsue, Japan, pp.81–88.Karuno, Y., Nagamochi, H. and Wang, X. (2007) ‘Bi-criteria food packing by dynamic programming’, Journal of the Operations Research Society of Japan, Vol. 50, No. 4, pp.376–389.Karuno, Y., Nagamochi, H. and Wang, X. (2010) ‘Optimization problems and algorithms in double-layered food packing systems’, Journal of Advanced Mechanical Design, System, and Manufacturing, Vol. 4, No. 3, pp.605–615.Karuno, Y., Takahashi, K. and Yamada, A. (2013) ‘Dynamic programming algorithms with data rounding for combinatorial food packing problems’, Journal of Advanced Mechanical Design, System, and Manufacturing, Vol. 7, No. 2, pp.233–243.Keraita, J.N. and Kim, K-H. (2006) ‘A study on the optimum scheme for determination of operation time of line feeders in automatic combination weighers’, Journal of Mechanical Science and Technology, Vol. 20, No. 10, pp.1567–1575.Keraita, J.N. and Kim, K-H. (2007) ‘A weighing algorithm for multihead weighers’, International Journal of Precision Engineering and Manufacturing, Vol. 8, No. 1, pp.21–26.Marler, T. (2009) Multi-Objective Optimization: Concepts and Methods for Engineering, VDM Verlag, Saarbruckend, Germany.Michalewicz, Z. and Fogel, D.B. (2004) How to Solve It: Modern Heuristics, 2nd ed., Springer Science and Business Media, Berlin.Montgomery, D.C. (2009) Introduction to Statistical Quality Control, 6th ed., John Wiley and Sons, New York, NY.Nemhauser, G. and Wolsey, L. (1988) Integer and Combinatorial Optimization, John Wiley and Sons, New York.Pulido-Rojano, A. and García-Díaz, J.C. (2016), ‘Analysis of the filling setting in the multihead weighing process’, in Proceedings of the International Joint Conference – CIOICIEOM – IIE-AIM (IJC 2016), San Sebastián, Spain, pp.521–528.Pulido-Rojano, A., García-Díaz, J.C. and Giner-Bosch, V. (2015) ‘A multiobjective approach for optimization of the multihead weighing process’, in Framinan, J.M., Perez, P. and Artiba, A. (Eds.): The Road Ahead: Understanding Challenges and Grasping Opportunities in Industrial and Systems Engineering, IEEE, Spain, p.67.Salicrú, M., González, C. and Barreiro, J.J. (1996) ‘Variability reduction with multiweighing proceedings’, Top, Vol. 4, No. 2, pp.319–329.Sasadhar, B. and Indrajit, M. (2018) ‘Advances in solution methods for optimisation of multiple quality characteristics in manufacturing processes’, International Journal of Productivity and Quality Management, Vol. 24, No. 4, pp.475–494, DOI: 10.1504/IJPQM.2018.093448.Selvam, G., Arockia, S., Surya, V. and Rohit, T. (2018) ‘Quality and productivity improvement through spot welding process optimisation in automobile body shop’, International Journal of Productivity and Quality Management, Vol. 23, No. 1, pp.110–127, DOI: 10.1504/IJPQM. 2018.088611.Sukrut, N. and Mohammed, I. (2017) ‘Quality enhancement through first pass yield using statistical process control’, International Journal of Productivity and Quality Management, Vol. 20, No. 2, pp.238–253, DOI: 10.1504/IJPQM.2017.081482.Tejaskumar, S.P. and Darshak, A.D. (2016) ‘A case study: to reduce process variability of valve seat depth in cylinder head using Six Sigma methodology’, International Journal of Productivity and Quality Management, Vol. 17, No. 4, pp.474–506, DOI: 10.1504/IJPQM. 2016.075250.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf738180https://bonga.unisimon.edu.co/bitstreams/42e2667a-f977-4400-8d7a-24b46935cbec/download7bef8001096c047b1fa82a519c8a44ddMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/64b8202d-22e3-4bfb-b3b2-605b6d3b6317/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/06aa9203-3577-4f47-8978-4a9a4edb038f/download733bec43a0bf5ade4d97db708e29b185MD53TEXTOptimisaalgoritforimprovementofamultiheadweighingprocess.pdf.txtOptimisaalgoritforimprovementofamultiheadweighingprocess.pdf.txtExtracted texttext/plain48270https://bonga.unisimon.edu.co/bitstreams/e9534980-b275-43a1-9fae-19b8cdf6463e/downloada67051f240a17e7e4b12123df176a3d4MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain51013https://bonga.unisimon.edu.co/bitstreams/7fbc25e4-ff6c-42e7-ac77-4686ff214f25/downloadc46930f90cac9c32c79f731116d1b009MD56THUMBNAILOptimisaalgoritforimprovementofamultiheadweighingprocess.pdf.jpgOptimisaalgoritforimprovementofamultiheadweighingprocess.pdf.jpgGenerated Thumbnailimage/jpeg1442https://bonga.unisimon.edu.co/bitstreams/41146d24-c6e6-4654-8bb6-f0907153ed44/downloadfbeeebd0e0be0adb0e067c751eeaad9bMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg4014https://bonga.unisimon.edu.co/bitstreams/ed0b7f52-ba9a-487c-be52-9739a0f84609/download5954247f5f6beee74be78d20ea66f925MD5720.500.12442/4497oai:bonga.unisimon.edu.co:20.500.12442/44972024-08-14 21:52:03.096http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u