Impact of HbA1c reduction on major kidney outcomes in type 2 diabetes with poor glycemic control and advanced CKD

Aims: In subjects with type 2 diabetes (DM), poor glycemic control, and advanced chronic kidney disease (CKD), the kidney beneft of the reduction of glycated hemoglobin (HbA1c) is not well established. Methods: In a retrospective cohort, we included patients with DM, CKD grade 3b-5, and HbA1c > 9...

Full description

Autores:
Navarro Blackaller, Guillermo
Benitez-Renteria, A. S.
Hernández-Morales, K.
Rico-Fontalvo, Jorge
Daza-Arnedo, R.
Gómez-Ramírez, G. G.
Camacho-Guerrero, J. R.
Pérez-Venegas, M. A.
Carmona-Morales, J.
Oseguera-González, A. N.
Murguía Soto, César
Chávez-Alonso, G.
García-Peña, F.
Barrera-Torres, C. J.
Orozco-Chan, E.
Arredondo-Dubois, M.
Martínez Gallardo González, Alejandro
Gómez-Fregoso, J. A.
Rodríguez-García, F. G.
Luquin-Arellano, V. H.
Abundis-Mora, G.
Alcantar-Vallin, L.
Medina-González, R.
García-García, G.
Chávez-Iñiguez, Jonathan S.
Tipo de recurso:
Fecha de publicación:
2025
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/16553
Acceso en línea:
https://hdl.handle.net/20.500.12442/16553
https://doi.org/10.1155/ije/9919963
https://onlinelibrary.wiley.com/journal/1573
Palabra clave:
Chronic kidney disease
Diabetes
Kidney replacement therapy
Major adverse kidney events
Mortality
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 International
id USIMONBOL2_a2a008a741225d57ade14002dbcc4787
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/16553
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Impact of HbA1c reduction on major kidney outcomes in type 2 diabetes with poor glycemic control and advanced CKD
title Impact of HbA1c reduction on major kidney outcomes in type 2 diabetes with poor glycemic control and advanced CKD
spellingShingle Impact of HbA1c reduction on major kidney outcomes in type 2 diabetes with poor glycemic control and advanced CKD
Chronic kidney disease
Diabetes
Kidney replacement therapy
Major adverse kidney events
Mortality
title_short Impact of HbA1c reduction on major kidney outcomes in type 2 diabetes with poor glycemic control and advanced CKD
title_full Impact of HbA1c reduction on major kidney outcomes in type 2 diabetes with poor glycemic control and advanced CKD
title_fullStr Impact of HbA1c reduction on major kidney outcomes in type 2 diabetes with poor glycemic control and advanced CKD
title_full_unstemmed Impact of HbA1c reduction on major kidney outcomes in type 2 diabetes with poor glycemic control and advanced CKD
title_sort Impact of HbA1c reduction on major kidney outcomes in type 2 diabetes with poor glycemic control and advanced CKD
dc.creator.fl_str_mv Navarro Blackaller, Guillermo
Benitez-Renteria, A. S.
Hernández-Morales, K.
Rico-Fontalvo, Jorge
Daza-Arnedo, R.
Gómez-Ramírez, G. G.
Camacho-Guerrero, J. R.
Pérez-Venegas, M. A.
Carmona-Morales, J.
Oseguera-González, A. N.
Murguía Soto, César
Chávez-Alonso, G.
García-Peña, F.
Barrera-Torres, C. J.
Orozco-Chan, E.
Arredondo-Dubois, M.
Martínez Gallardo González, Alejandro
Gómez-Fregoso, J. A.
Rodríguez-García, F. G.
Luquin-Arellano, V. H.
Abundis-Mora, G.
Alcantar-Vallin, L.
Medina-González, R.
García-García, G.
Chávez-Iñiguez, Jonathan S.
dc.contributor.author.none.fl_str_mv Navarro Blackaller, Guillermo
Benitez-Renteria, A. S.
Hernández-Morales, K.
Rico-Fontalvo, Jorge
Daza-Arnedo, R.
Gómez-Ramírez, G. G.
Camacho-Guerrero, J. R.
Pérez-Venegas, M. A.
Carmona-Morales, J.
Oseguera-González, A. N.
Murguía Soto, César
Chávez-Alonso, G.
García-Peña, F.
Barrera-Torres, C. J.
Orozco-Chan, E.
Arredondo-Dubois, M.
Martínez Gallardo González, Alejandro
Gómez-Fregoso, J. A.
Rodríguez-García, F. G.
Luquin-Arellano, V. H.
Abundis-Mora, G.
Alcantar-Vallin, L.
Medina-González, R.
García-García, G.
Chávez-Iñiguez, Jonathan S.
dc.subject.keywords.eng.fl_str_mv Chronic kidney disease
Diabetes
Kidney replacement therapy
Major adverse kidney events
Mortality
topic Chronic kidney disease
Diabetes
Kidney replacement therapy
Major adverse kidney events
Mortality
description Aims: In subjects with type 2 diabetes (DM), poor glycemic control, and advanced chronic kidney disease (CKD), the kidney beneft of the reduction of glycated hemoglobin (HbA1c) is not well established. Methods: In a retrospective cohort, we included patients with DM, CKD grade 3b-5, and HbA1c > 9% to evaluate the risk of developing major adverse kidney events (MAKE) defned as the start of kidney replacement therapy (KRT), ≥ 25% or ≥ 40% decline in the glomerular fltration rate (eGFR) from baseline, and death; patients were divided according to the HbA1c levels at the end of the follow-up into the following groups: > 75 mmol/mol (≥ 9.0%), 74–64 mmol/mol (8.9%–8.0%), 64–53 mmol/mol (7.9%–7.0%), and < 52 mmol/mol (< 7.0%). We described their characteristics and analyzed their risks, adjusting for confounding variables. Results: From 2015 to 2023, 111 patients were included. In 46 patients (41.4%), the HbA1c at the end of follow-up (60 months) was still > 75 mmol/mol (≥ 9%), and each patient had a mean of 4.9 HbA1c measurements. Te mean age was 59 years, and 46% were male; the baseline eGFR was 25 mL/min/1.73 m2 . MAKE occurred in 67% of cases. In a multivariate analysis, the risk of MAKE was not associated with the HbA1c groups, nor was it associated with any of the MAKE components individually, nor in certain subgroups. When evaluating the magnitude of percentage changes in HbA1 with the initiation of KRT, we did not fnd any association. Conclusions: With advanced CKD and poor glycemic control, changes in HbA1c during long follow-up are not associated with MAKE or its individual components.
publishDate 2025
dc.date.accessioned.none.fl_str_mv 2025-05-07T22:44:04Z
dc.date.available.none.fl_str_mv 2025-05-07T22:44:04Z
dc.date.issued.none.fl_str_mv 2025
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.none.fl_str_mv Artículo científico
dc.identifier.citation.none.fl_str_mv Navarro-Blackaller, G., Benitez-Renteria, A. S., Hernández-Morales, K., Rico-Fontalvo, J., Daza-Arnedo, R., Gómez-Ramírez, G. G., Camacho-Guerrero, J. R., Pérez-Venegas, M. A., Carmona-Morales, J., Oseguera-González, A. N., Murguía-Soto, C., Chávez-Alonso, G., García-Peña, F., Barrera-Torres, C. J., Orozco-Chan, E., Arredondo-Dubois, M., Gallardo-González, A. Martínez, Gómez-Fregoso, J. A., Rodríguez-García, F. G., Luquin-Arellano, V. H., Abundis-Mora, G., Alcantar-Vallin, L., Medina-González, R., García-García, G., Chávez-Iñiguez, J. S., Impact of HbA1c Reduction on Major Kidney Outcomes in Type 2 Diabetes With Poor Glycemic Control and Advanced CKD, International Journal of Endocrinology, 2025, 9919963, 12 pages, 2025. https://doi.org/10.1155/ije/9919963
dc.identifier.issn.none.fl_str_mv 16878345 (Electrónico)
16878337 (Impreso)
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/16553
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1155/ije/9919963
dc.identifier.url.none.fl_str_mv https://onlinelibrary.wiley.com/journal/1573
identifier_str_mv Navarro-Blackaller, G., Benitez-Renteria, A. S., Hernández-Morales, K., Rico-Fontalvo, J., Daza-Arnedo, R., Gómez-Ramírez, G. G., Camacho-Guerrero, J. R., Pérez-Venegas, M. A., Carmona-Morales, J., Oseguera-González, A. N., Murguía-Soto, C., Chávez-Alonso, G., García-Peña, F., Barrera-Torres, C. J., Orozco-Chan, E., Arredondo-Dubois, M., Gallardo-González, A. Martínez, Gómez-Fregoso, J. A., Rodríguez-García, F. G., Luquin-Arellano, V. H., Abundis-Mora, G., Alcantar-Vallin, L., Medina-González, R., García-García, G., Chávez-Iñiguez, J. S., Impact of HbA1c Reduction on Major Kidney Outcomes in Type 2 Diabetes With Poor Glycemic Control and Advanced CKD, International Journal of Endocrinology, 2025, 9919963, 12 pages, 2025. https://doi.org/10.1155/ije/9919963
16878345 (Electrónico)
16878337 (Impreso)
url https://hdl.handle.net/20.500.12442/16553
https://doi.org/10.1155/ije/9919963
https://onlinelibrary.wiley.com/journal/1573
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.eng.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.none.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.none.fl_str_mv pdf
dc.publisher.eng.fl_str_mv Wiley
dc.source.eng.fl_str_mv International journal of endocrinology
dc.source.spa.fl_str_mv Año 2025
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/6bc5da92-3cfc-48b8-9ffa-caa9150b695a/download
https://bonga.unisimon.edu.co/bitstreams/f5ae9a95-9240-4eb0-a2c2-e17a17aafbd8/download
https://bonga.unisimon.edu.co/bitstreams/8e7b2231-7af8-418e-b721-399d8457398a/download
https://bonga.unisimon.edu.co/bitstreams/bf8b14b8-2029-43c4-bcfd-7c9f8126a3ec/download
https://bonga.unisimon.edu.co/bitstreams/63466fbf-a61c-4035-acf3-941d4e0d0e36/download
bitstream.checksum.fl_str_mv b1bf0ed8e9cc74483405df47f5c22ae4
3b6ce8e9e36c89875e8cf39962fe8920
733bec43a0bf5ade4d97db708e29b185
548749973c76ec2ce3fcbe79041f5da5
bdfbe58f003f0ad9f2eb59f54feefdd9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1834107412540293120
spelling Navarro Blackaller, Guillermo2946f919-28aa-44e8-a0f7-ec0de0d001cb600Benitez-Renteria, A. S.d598b9b2-dd9a-45b9-8a5e-438b3a01f377-1Hernández-Morales, K.41cffe27-3be2-4bdb-bad1-f580fce9b5ef-1Rico-Fontalvo, Jorge43f6db70-4719-4f3a-9e7e-b8fbe6e5594c600Daza-Arnedo, R.b6f338e5-613c-4e10-ba90-f30bc529a3cf-1Gómez-Ramírez, G. G.3651a547-da42-4601-a20f-6bc91fcd2a0b-1Camacho-Guerrero, J. R.13d76f5b-3ea1-4ad5-b16b-9dcec7593096-1Pérez-Venegas, M. A.6b472781-6033-4a22-b536-8c288e8e038d-1Carmona-Morales, J.e76bc41f-f6e0-4a67-abc0-659aa6897117-1Oseguera-González, A. N.68c38757-0c96-4347-b5ed-dbca4020d975-1Murguía Soto, César2102a87c-a806-4887-aa45-45c9a7b770ab600Chávez-Alonso, G.4b87b276-4c32-4e03-83a6-7cbc2b403f96-1García-Peña, F.a8f60931-7fb1-427e-9591-91473819a30f-1Barrera-Torres, C. J.0ebb34fd-9090-445f-b4db-51df9f7480e6-1Orozco-Chan, E.94c93ab9-4ad9-4155-92ad-a2048f2dd131-1Arredondo-Dubois, M.43bdb01a-1977-4f5e-8293-0507e23a2912-1Martínez Gallardo González, Alejandro3b7dc80d-6a74-4c74-a94c-5b45e40ca441600Gómez-Fregoso, J. A.ca849c8c-7164-4738-8a2e-3952c8e4ad65-1Rodríguez-García, F. G.b9c0cd1e-1eb8-4a34-a4e3-6a2fc49ecc38-1Luquin-Arellano, V. H.bc783714-f7dc-4277-af91-068309ed9bfe-1Abundis-Mora, G.54d1357b-a7cc-489d-ba8e-6c58a7f05900-1Alcantar-Vallin, L.d05bc42c-3f63-4e8c-84db-2b695387d788-1Medina-González, R.b275b091-f933-4770-9217-ab9634b1c66c-1García-García, G.4f6c471d-bc05-4672-b9be-78a39ff03117-1Chávez-Iñiguez, Jonathan S.c8169d07-3787-41fa-8629-6b5f68d782b96002025-05-07T22:44:04Z2025-05-07T22:44:04Z2025Navarro-Blackaller, G., Benitez-Renteria, A. S., Hernández-Morales, K., Rico-Fontalvo, J., Daza-Arnedo, R., Gómez-Ramírez, G. G., Camacho-Guerrero, J. R., Pérez-Venegas, M. A., Carmona-Morales, J., Oseguera-González, A. N., Murguía-Soto, C., Chávez-Alonso, G., García-Peña, F., Barrera-Torres, C. J., Orozco-Chan, E., Arredondo-Dubois, M., Gallardo-González, A. Martínez, Gómez-Fregoso, J. A., Rodríguez-García, F. G., Luquin-Arellano, V. H., Abundis-Mora, G., Alcantar-Vallin, L., Medina-González, R., García-García, G., Chávez-Iñiguez, J. S., Impact of HbA1c Reduction on Major Kidney Outcomes in Type 2 Diabetes With Poor Glycemic Control and Advanced CKD, International Journal of Endocrinology, 2025, 9919963, 12 pages, 2025. https://doi.org/10.1155/ije/991996316878345 (Electrónico)16878337 (Impreso)https://hdl.handle.net/20.500.12442/16553https://doi.org/10.1155/ije/9919963https://onlinelibrary.wiley.com/journal/1573Aims: In subjects with type 2 diabetes (DM), poor glycemic control, and advanced chronic kidney disease (CKD), the kidney beneft of the reduction of glycated hemoglobin (HbA1c) is not well established. Methods: In a retrospective cohort, we included patients with DM, CKD grade 3b-5, and HbA1c > 9% to evaluate the risk of developing major adverse kidney events (MAKE) defned as the start of kidney replacement therapy (KRT), ≥ 25% or ≥ 40% decline in the glomerular fltration rate (eGFR) from baseline, and death; patients were divided according to the HbA1c levels at the end of the follow-up into the following groups: > 75 mmol/mol (≥ 9.0%), 74–64 mmol/mol (8.9%–8.0%), 64–53 mmol/mol (7.9%–7.0%), and < 52 mmol/mol (< 7.0%). We described their characteristics and analyzed their risks, adjusting for confounding variables. Results: From 2015 to 2023, 111 patients were included. In 46 patients (41.4%), the HbA1c at the end of follow-up (60 months) was still > 75 mmol/mol (≥ 9%), and each patient had a mean of 4.9 HbA1c measurements. Te mean age was 59 years, and 46% were male; the baseline eGFR was 25 mL/min/1.73 m2 . MAKE occurred in 67% of cases. In a multivariate analysis, the risk of MAKE was not associated with the HbA1c groups, nor was it associated with any of the MAKE components individually, nor in certain subgroups. When evaluating the magnitude of percentage changes in HbA1 with the initiation of KRT, we did not fnd any association. Conclusions: With advanced CKD and poor glycemic control, changes in HbA1c during long follow-up are not associated with MAKE or its individual components.pdfengWileyAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2International journal of endocrinologyAño 2025Impact of HbA1c reduction on major kidney outcomes in type 2 diabetes with poor glycemic control and advanced CKDinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Chronic kidney diseaseDiabetesKidney replacement therapyMajor adverse kidney eventsMortalityO. Y. Bello-Chavolla, N. E. Antonio-Villa, C. A. Ferm´ın-Mart´ınez, et al., “Diabetes-Related Excess Mortality in Mexico: A Comparative Analysis of National Death Registries Between 2017–2019 and 2020,” Diabetes Care 45, no. 12 (2022): 2957–2966, https://doi.org/10.2337/dc22- 0616.L. R. Zelnick, N. S. Weiss, B. R. Kestenbaum, et al., “Diabetes and CKD in the United States Population, 2009–2014,” Clinical Journal of the American Society of Nephrology 12, no. 12 (2017): 1984–1990, https://doi.org/10.2215/ CJN.03700417M. Afkarian, M. C. Sachs, B. Kestenbaum, et al., “Kidney Disease and Increased Mortality Risk in Type 2 Diabetes,” Journal of the American Society of Nephrology 24, no. 2 (2013): 302–308, https://doi.org/10.1681/ASN.2012070718.L. Tonneijck, M. H. Muskiet, M. M. Smits, et al., “Glomerular Hyperfltration in Diabetes: Mechanisms, Clinical Signifcance, and Treatment,” Journal of the American Society of Nephrology 28, no. 4 (2017): 1023–1039, https://doi.org/ 10.1681/ASN.2016060666.H. J. Anders, T. B. Huber, B. Isermann, and M. Schifer, “CKD in Diabetes: Diabetic Kidney Disease Versus Nondiabetic Kidney Disease,” Nature Reviews Nephrology 14, no. 6 (2018): 361–377, https://doi.org/10.1038/s41581-018-0001-y.S. A. Amiel, P. Aschner, B. Childs, et al., “Hypoglycaemia, Cardiovascular Disease, and Mortality in Diabetes: Epidemiology, Pathogenesis, and Management,” Lancet Diabetes & Endocrinology 7, no. 5 (2019): 385–396, https://doi.org/ 10.1016/S2213-8587(18)30315-2.R. E. Gilbert and P. A. Marsden, “Activated Protein C and Diabetic Nephropathy,” New England Journal of Medicine 358, no. 15 (2008): 1628–1630, https://doi.org/10.1056/ NEJMcibr0801042.A. Diez-Sampedro, O. Lenz, and A. Fornoni, “Podocytopathy in Diabetes: A Metabolic and Endocrine Disorder,” American Journal of Kidney Diseases 58, no. 4 (2011): 637–646, https:// doi.org/10.1053/j.ajkd.2011.03.035.A. E. Stinghen, Z. A. Massy, H. Vlassara, G. E. Striker, and A. Boullier, “Uremic Toxicity of Advanced Glycation End Products in CKD,” Journal of the American Society of Nephrology 27, no. 2 (2016): 354–370, https://doi.org/10.1681/ ASN.2014101047.A. Flyvbjerg, “Te Role of the Complement System in Diabetic Nephropathy,” Nature Reviews Nephrology 13, no. 5 (2017): 311–318, https://doi.org/10.1038/nrneph.2017.31.Y. Suzuki, H. Kaneko, A. Okada, et al., “Impact of Glucose Tolerance and Its Change on Incident Proteinuria: Analysis of a Nationwide Population-Based Dataset,” American Journal of Nephrology 53, no. 4 (2022): 307–315, https://doi.org/10.1159/ 000522280.H. H. Jung, “Evaluation of Serum Glucose and Kidney Disease Progression Among Patients With Diabetes,” JAMA Network Open 4, no. 9 (2021): e2127387, https://doi.org/10.1001/ jamanetworkopen.2021.27387.R. J. Galindo, R. W. Beck, M. F. Scioscia, G. E. Umpierrez, and K. R. Tuttle, “Glycemic Monitoring and Management in Advanced Chronic Kidney Disease,” Endocrine Reviews 41, no. 5 (2020): 756–774, https://doi.org/10.1210/endrev/ bnaa017.S. D. Navaneethan, J. D. Schold, S. E. Jolly, S. Arrigain, W. C. Winkelmayer, and J. V. Nally Jr, “Diabetes Control and the Risks of ESRD and Mortality in Patients With CKD,” American Journal of Kidney Diseases 70, no. 2 (2017): 191–198, https://doi.org/10.1053/j.ajkd.2016.11.018.C. Limkunakul, I. H. de Boer, B. R. Kestenbaum, J. Himmelfarb, T. A. Ikizler, and C. Robinson-Cohen, “Te Association of Glycated Hemoglobin With Mortality and ESKD Among Persons With Diabetes and Chronic Kidney Disease,” Journal of Diabetes and Its Complications 33, no. 4 (2019): 296–301, https://doi.org/10.1016/j.jdiacomp.2018.12.010.P. Rossing, M. L. Caramori, J. C. Chan, et al., “KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease,” Kidney International 102, no. 5 (2022): S1–S127, https://doi.org/10.1016/j.kint.2022.06.008.K. R. Tuttle, G. L. Bakris, R. W. Bilous, et al., “Diabetic Kidney Disease: A Report From an ADA Consensus Conference,” Diabetes Care 37, no. 10 (2014): 2864–2883, https://doi.org/ 10.2337/dc14-1296.M. Oshima, M. Shimizu, M. Yamanouchi, et al., “Trajectories of Kidney Function in Diabetes: A Clinicopathological Update,” Nature Reviews Nephrology 17, no. 11 (2021): 740–750, https://doi.org/10.1038/s41581-021-00462-y.L. A. Wright and I. B. Hirsch, “Metrics Beyond Hemoglobin A1C in Diabetes Management: Time in Range, Hypoglycemia, and Other Parameters,” Diabetes Technology & Terapeutics 19, no. S2 (2017): S-16–S-26, https://doi.org/10.1089/ dia.2017.0029.P. E. Stevens and A. Levin, “Evaluation and Management of Chronic Kidney Disease: Synopsis of the Kidney Disease: Improving Global Outcomes 2012 Clinical Practice Guideline,” Annals of Internal Medicine 158, no. 11 (2013): 825–830, https://doi.org/10.7326/0003-4819-158-11-201306040-00007.E. von Elm, D. G. Altman, M. Egger, et al., “Te Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies,” International Journal of Surgery 12, no. 12 (2014): 1495–1499, https://doi.org/10.1016/j.ijsu.2014.07.013.E. I. Benchimol, L. Smeeth, A. Guttmann, et al., “Te Reporting of Studies Conducted Using Observational Routinely-Collected Health Data (RECORD) Statement,” PLoS Medicine 12, no. 10 (Oct 6 2015): e1001885, https:// doi.org/10.1371/journal.pmed.1001885.J. A. Kellum, N. Lameire, and Kdigo AKI Guideline Work Group, “Diagnosis, Evaluation, and Management of Acute Kidney Injury: A KDIGO Summary (Part 1),” Critical Care 17, no. 1 (2013): 204, https://doi.org/10.1186/cc11454.S. Negi, D. Koreeda, S. Kobayashi, Y. Iwashita, and T. Shigematu, “Renal Replacement Terapy for Acute Kidney Injury,” Renal Replacement Terapy 2, no. 1 (2016): 31–37, https://doi.org/10.1186/s41100-016-0043-1.D. E. Leaf and S. S. Waikar, “IDEAL-ICU in Context,” Clinical Journal of the American Society of Nephrology 14, no. 8 (2019): 1264–1267, https://doi.org/10.2215/CJN.01180119.Advance Collaborative Group, A. Patel, S. MacMahon, et al., “Intensive Blood Glucose Control and Vascular Outcomes in Patients With Type 2 Diabetes,” New England Journal of Medicine 358, no. 24 (2008): 2560–2572, https://doi.org/ 10.1056/NEJMoa0802987.W. Duckworth, C. Abraira, T. Moritz, et al., “Glucose Control and Vascular Complications in Veterans With Type 2 International Journal of Endocrinology 11 Diabetes,” New England Journal of Medicine 360, no. 2 (2009): 129–139, https://doi.org/10.1056/NEJMoa0808431.F. Ismail-Beigi, T. Craven, M. A. Banerji, et al., “Efect of Intensive Treatment of Hyperglycaemia on Microvascular Outcomes in Type 2 Diabetes: An Analysis of the ACCORD Randomised Trial,” Te Lancet 376, no. 9739 (2010): 419–430, https://doi.org/10.1016/S0140-6736(10)60576-4.K. Shikata, M. Haneda, T. Ninomiya, et al., “Randomized Trial of an Intensifed, Multifactorial Intervention in Patients With Advanced-Stage Diabetic Kidney Disease: Diabetic Nephropathy Remission and Regression Team Trial in Japan (DNETT-Japan),” Journal of Diabetes Investigation 12, no. 2 (2021): 207–216, https://doi.org/10.1111/jdi.13339.M. Hodge, E. McArthur, A. X. Garg, N. Tangri, and K. K. Clemens, “Hypoglycemia Incidence in Older Adults by Estimated GFR,” American Journal of Kidney Diseases 70, no. 1 (Jul 2017): 59–68, https://doi.org/10.1053/ j.ajkd.2016.11.019.S. Hong, L. Presswala, Y. T. Harris, et al., “Hypoglycemia in Patients With Type 2 Diabetes Mellitus and Chronic Kidney Disease: A Prospective Observational Study,” Kidney 1, no. 9 (2020): 897–903, https://doi.org/10.34067/KID.0001272020.M. F. Moen, M. Zhan, V. D. Hsu, et al., “Frequency of Hypoglycemia and Its Signifcance in Chronic Kidney Disease,” Clinical Journal of the American Society of Nephrology 4, no. 6 (2009): 1121–1127, https://doi.org/10.2215/CJN.00800209.I. Ahmad, L. R. Zelnick, Z. Batacchi, et al., “Hypoglycemia in People With Type 2 Diabetes and CKD,” Clinical Journal of the American Society of Nephrology 14, no. 6 (2019): 844–853, https://doi.org/10.2215/CJN.11650918.Y. Xu, S. Dong, E. L. Fu, et al., “Long-Term Visit-To-Visit Variability in Hemoglobin A1c and Kidney-Related Outcomes in Persons With Diabetes,” American Journal of Kidney Diseases 82, no. 3 (May 2023): 267–278, https://doi.org/ 10.1053/j.ajkd.2023.03.007.S. De Marchi, E. Cecchin, C. Camurri, et al., “Origin of Glycosylated Hemoglobin Al in Chronic Renal Failure,” Te International Journal of Artifcial Organs 6, no. 2 (1983): 77–82, https://doi.org/10.1177/039139888300600208.F. E. Vos, J. B. Schollum, C. V. Coulter, P. J. Manning, S. B. Dufull, and R. J. Walker, “Assessment of Markers of Glycaemic Control in Diabetic Patients With Chronic Kidney Disease Using Continuous Glucose Monitoring,” Nephrology 17, no. 2 (2012): 182–188, https://doi.org/10.1111/j.1440- 1797.2011.01517.x.J. Chavez, G. Garcia-Garcia, R. Medina, et al., “Alejandro. Decrease of Hemoglobin A1c (HbA1c) in Patients With Type 2 Diabetes, Suboptimal Glycemic Control, in Advanced CKD, and Major Adverse Kidney Events: PUB116,” Journal of the American Society of Nephrology 35, no. 10S (2024): https:// doi.org/10.1681/ASN.2024vjf5zt55.ORIGINALPDF.pdfPDF.pdfapplication/pdf1298865https://bonga.unisimon.edu.co/bitstreams/6bc5da92-3cfc-48b8-9ffa-caa9150b695a/downloadb1bf0ed8e9cc74483405df47f5c22ae4MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8899https://bonga.unisimon.edu.co/bitstreams/f5ae9a95-9240-4eb0-a2c2-e17a17aafbd8/download3b6ce8e9e36c89875e8cf39962fe8920MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/8e7b2231-7af8-418e-b721-399d8457398a/download733bec43a0bf5ade4d97db708e29b185MD53TEXTPDF.pdf.txtPDF.pdf.txtExtracted texttext/plain56073https://bonga.unisimon.edu.co/bitstreams/bf8b14b8-2029-43c4-bcfd-7c9f8126a3ec/download548749973c76ec2ce3fcbe79041f5da5MD54THUMBNAILPDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5724https://bonga.unisimon.edu.co/bitstreams/63466fbf-a61c-4035-acf3-941d4e0d0e36/downloadbdfbe58f003f0ad9f2eb59f54feefdd9MD5520.500.12442/16553oai:bonga.unisimon.edu.co:20.500.12442/165532025-05-09 17:11:27.994http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u