Anomaly identification during polymerase chain reaction for detecting SARS-cov-2 using artificial intelligence trained from simulated data

Real-time reverse transcription (RT) PCR is the gold standard for detecting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), owing to its sensitivity and specificity, thereby meeting the demand for the rising number of cases. The scarcity of trained molecular biologists for analyzing PC...

Full description

Autores:
Villarreal-González, Reynaldo
Acosta-Hoyos, Antonio J.
Garzón-Ochoa, Jaime A.
Galán-Freyle, Nataly J.
Amar-Sepúlveda, Paola
Pacheco-Londoño, Leonardo C.
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/9229
Acceso en línea:
https://hdl.handle.net/20.500.12442/9229
https://dx.doi.org/10.3390/molecules26010020
https://www.mdpi.com/journal/molecules
Palabra clave:
SARS-CoV-2
Artificial intelligence
Polymerase chain reaction
COVID-19
Simulated data
Rights
restrictedAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_9cd6828c1815f2db261581646f546029
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/9229
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Anomaly identification during polymerase chain reaction for detecting SARS-cov-2 using artificial intelligence trained from simulated data
title Anomaly identification during polymerase chain reaction for detecting SARS-cov-2 using artificial intelligence trained from simulated data
spellingShingle Anomaly identification during polymerase chain reaction for detecting SARS-cov-2 using artificial intelligence trained from simulated data
SARS-CoV-2
Artificial intelligence
Polymerase chain reaction
COVID-19
Simulated data
title_short Anomaly identification during polymerase chain reaction for detecting SARS-cov-2 using artificial intelligence trained from simulated data
title_full Anomaly identification during polymerase chain reaction for detecting SARS-cov-2 using artificial intelligence trained from simulated data
title_fullStr Anomaly identification during polymerase chain reaction for detecting SARS-cov-2 using artificial intelligence trained from simulated data
title_full_unstemmed Anomaly identification during polymerase chain reaction for detecting SARS-cov-2 using artificial intelligence trained from simulated data
title_sort Anomaly identification during polymerase chain reaction for detecting SARS-cov-2 using artificial intelligence trained from simulated data
dc.creator.fl_str_mv Villarreal-González, Reynaldo
Acosta-Hoyos, Antonio J.
Garzón-Ochoa, Jaime A.
Galán-Freyle, Nataly J.
Amar-Sepúlveda, Paola
Pacheco-Londoño, Leonardo C.
dc.contributor.author.none.fl_str_mv Villarreal-González, Reynaldo
Acosta-Hoyos, Antonio J.
Garzón-Ochoa, Jaime A.
Galán-Freyle, Nataly J.
Amar-Sepúlveda, Paola
Pacheco-Londoño, Leonardo C.
dc.subject.spa.fl_str_mv SARS-CoV-2
topic SARS-CoV-2
Artificial intelligence
Polymerase chain reaction
COVID-19
Simulated data
dc.subject.eng.fl_str_mv Artificial intelligence
Polymerase chain reaction
COVID-19
Simulated data
description Real-time reverse transcription (RT) PCR is the gold standard for detecting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), owing to its sensitivity and specificity, thereby meeting the demand for the rising number of cases. The scarcity of trained molecular biologists for analyzing PCR results makes data verification a challenge. Artificial intelligence (AI) was designed to ease verification, by detecting atypical profiles in PCR curves caused by contamination or artifacts. Four classes of simulated real-time RT-PCR curves were generated, namely, positive, early, no, and abnormal amplifications. Machine learning (ML) models were generated and tested using small amounts of data from each class. The best model was used for classifying the big data obtained by the Virology Laboratory of Simon Bolivar University from real-time RT-PCR curves for SARS-CoV-2, and the model was retrained and implemented in a software that correlated patient data with test and AI diagnoses. The best strategy for AI included a binary classification model, which was generated from simulated data, where data analyzed by the first model were classified as either positive or negative and abnormal. To differentiate between negative and abnormal, the data were reevaluated using the second model. In the first model, the data required preanalysis through a combination of prepossessing. The early amplification class was eliminated from the models because the numbers of cases in big data was negligible. ML models can be created from simulated data using minimum available information. During analysis, changes or variations can be incorporated by generating simulated data, avoiding the incorporation of large amounts of experimental data encompassing all possible changes. For diagnosing SARS-CoV-2, this type of AI is critical for optimizing PCR tests because it enables rapid diagnosis and reduces false positives. Our method can also be used for other types of molecular analyses.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-12-13T15:11:26Z
dc.date.available.none.fl_str_mv 2021-12-13T15:11:26Z
dc.date.issued.none.fl_str_mv 2021
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.citation.spa.fl_str_mv Villarreal-González, R.; Acosta- Hoyos, A.J.; Garzon-Ochoa, J.A.; Galán- Freyle, N.J.; Amar-Sepúlveda, P.; Pacheco- Londoño, L.C. Anomaly Identification during Polymerase Chain Reaction for Detecting SARS-CoV-2 Using Artificial Intelligence Trained from Simulated Data. Molecules 2021, 26, 20. https://dx.doi.org/10.3390/ molecules26010020
dc.identifier.issn.none.fl_str_mv 1420-3049
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/9229
dc.identifier.doi.none.fl_str_mv https://dx.doi.org/10.3390/molecules26010020
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/journal/molecules
identifier_str_mv Villarreal-González, R.; Acosta- Hoyos, A.J.; Garzon-Ochoa, J.A.; Galán- Freyle, N.J.; Amar-Sepúlveda, P.; Pacheco- Londoño, L.C. Anomaly Identification during Polymerase Chain Reaction for Detecting SARS-CoV-2 Using Artificial Intelligence Trained from Simulated Data. Molecules 2021, 26, 20. https://dx.doi.org/10.3390/ molecules26010020
1420-3049
url https://hdl.handle.net/20.500.12442/9229
https://dx.doi.org/10.3390/molecules26010020
https://www.mdpi.com/journal/molecules
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/restrictedAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_16ec
eu_rights_str_mv restrictedAccess
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.spa.fl_str_mv MDPI
Facultad de Ingenierías
dc.source.eng.fl_str_mv Revista Molecules
dc.source.none.fl_str_mv Vol. 26, No. 1 (2021)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/1a367f00-9d95-45e6-9d0f-0a96c7dd6567/download
https://bonga.unisimon.edu.co/bitstreams/67d565b4-3c62-4513-96d0-b82cca7307e9/download
https://bonga.unisimon.edu.co/bitstreams/0bc116d9-145e-4e97-9fd2-50552d2c137a/download
https://bonga.unisimon.edu.co/bitstreams/8ba9b1a5-dc04-41d0-a0f4-e564188e6ead/download
https://bonga.unisimon.edu.co/bitstreams/ec78b626-8c12-43c2-9b4d-906f059fe7bb/download
https://bonga.unisimon.edu.co/bitstreams/d92277b3-48c7-4a27-bc26-9692d58ca66e/download
https://bonga.unisimon.edu.co/bitstreams/989d4106-9add-4454-be06-f7bbad5ab92d/download
https://bonga.unisimon.edu.co/bitstreams/80822da5-df09-41e4-b475-4267c599dfac/download
https://bonga.unisimon.edu.co/bitstreams/a62932dc-549e-459c-a8f5-1d9b8997fb7e/download
bitstream.checksum.fl_str_mv 19357b71028b49cf6ffd65a219cc71bc
4460e5956bc1d1639be9ae6146a50347
2a1661e5960a7bab4fd8dda692fb677c
a3eb6a334df157d7c851370f0d53e202
c1859f95aef2509c1be33d7edc7b8752
c1859f95aef2509c1be33d7edc7b8752
f547975df7c83161c80f029c45c86c88
c0d4a2fe7bd269c0cc176a80c08847c5
c0d4a2fe7bd269c0cc176a80c08847c5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076096030703616
spelling Villarreal-González, Reynaldo0b64215d-5c8b-4e4d-b796-746ffe6b54feAcosta-Hoyos, Antonio J.6b712d95-7eef-4f3a-ba0b-6647f66d0749Garzón-Ochoa, Jaime A.f746f206-45a5-4bcf-b417-09305bbc3035Galán-Freyle, Nataly J.cd16040f-2e16-4535-a75e-0b661dae889fAmar-Sepúlveda, Paola89dc4721-af40-451f-8e88-d27fc35f1bf8Pacheco-Londoño, Leonardo C.6b1ffce2-eacd-4bef-ac33-027cc8b3ddb22021-12-13T15:11:26Z2021-12-13T15:11:26Z2021Villarreal-González, R.; Acosta- Hoyos, A.J.; Garzon-Ochoa, J.A.; Galán- Freyle, N.J.; Amar-Sepúlveda, P.; Pacheco- Londoño, L.C. Anomaly Identification during Polymerase Chain Reaction for Detecting SARS-CoV-2 Using Artificial Intelligence Trained from Simulated Data. Molecules 2021, 26, 20. https://dx.doi.org/10.3390/ molecules260100201420-3049https://hdl.handle.net/20.500.12442/9229https://dx.doi.org/10.3390/molecules26010020https://www.mdpi.com/journal/moleculesReal-time reverse transcription (RT) PCR is the gold standard for detecting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), owing to its sensitivity and specificity, thereby meeting the demand for the rising number of cases. The scarcity of trained molecular biologists for analyzing PCR results makes data verification a challenge. Artificial intelligence (AI) was designed to ease verification, by detecting atypical profiles in PCR curves caused by contamination or artifacts. Four classes of simulated real-time RT-PCR curves were generated, namely, positive, early, no, and abnormal amplifications. Machine learning (ML) models were generated and tested using small amounts of data from each class. The best model was used for classifying the big data obtained by the Virology Laboratory of Simon Bolivar University from real-time RT-PCR curves for SARS-CoV-2, and the model was retrained and implemented in a software that correlated patient data with test and AI diagnoses. The best strategy for AI included a binary classification model, which was generated from simulated data, where data analyzed by the first model were classified as either positive or negative and abnormal. To differentiate between negative and abnormal, the data were reevaluated using the second model. In the first model, the data required preanalysis through a combination of prepossessing. The early amplification class was eliminated from the models because the numbers of cases in big data was negligible. ML models can be created from simulated data using minimum available information. During analysis, changes or variations can be incorporated by generating simulated data, avoiding the incorporation of large amounts of experimental data encompassing all possible changes. For diagnosing SARS-CoV-2, this type of AI is critical for optimizing PCR tests because it enables rapid diagnosis and reduces false positives. Our method can also be used for other types of molecular analyses.pdfengMDPIFacultad de IngenieríasAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/restrictedAccesshttp://purl.org/coar/access_right/c_16ecRevista MoleculesVol. 26, No. 1 (2021)SARS-CoV-2Artificial intelligencePolymerase chain reactionCOVID-19Simulated dataAnomaly identification during polymerase chain reaction for detecting SARS-cov-2 using artificial intelligence trained from simulated datainfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/resource_type/c_2df8fbb1Mashamba-Thompson, T.P.; Crayton, E.D. Blockchain and artificial intelligence technology for novel coronavirus disease 2019 self-testing. Diagnostics 2020, 10, 198.Huang, L.; Zhang, H.; Deng, D.; Zhao, K.; Liu, K.; Hendrix, D.A.; Mathews, D.H. LinearFold: Linear-time approximate RNA folding by 50-to-30 dynamic programming and beam search. Bioinformatics 2019, 35, i295–i304.Jumper, J.; Tunyasuvunakool, K.; Kohli, P.; Hassabis, D.; Team, A. Computational Predictions of Protein Structures Associated with COVID-19. Available online: https://deepmind.com/research/open-source/computational-predictions-of-protein-structuresassociated- with-COVID-19 (accessed on 28 July 2020).Robson, B. Computers and viral diseases. Preliminary bioinformatics studies on the design of a synthetic vaccine and a preventative peptidomimetic antagonist against the SARS-CoV-2 (2019-nCoV, COVID-19) coronavirus. Comput. Biol. Med. 2020, 119, 103670.Cai, C.Z.; Han, L.Y.; Chen, X.; Cao, Z.W.; Chen, Y.Z. Prediction of functional class of the SARS coronavirus proteins by a statistical learning method. J. Proteome Res. 2005, 4, 1855–1862.Ahuja, A.S.; Reddy, V.P.; Marques, O. Artificial intelligence and COVID-19: A multidisciplinary approach. Integr. Med. Res. 2020, 9, 100434.Allam, Z.; Dey, G.; Jones, D.S. Artificial Intelligence (AI) provided early detection of the Coronavirus (COVID-19) in China and will influence future urban health policy internationally. AI 2020, 1, 156–165.Fusco, A.; Dicuonzo, G.; Dell’Atti, V.; Tatullo,M. Blockchain in healthcare: Insights on COVID-19. Int. J. Environ. Res. Public Health 2020, 17, 7167.Rakib, A.; Paul, A.; Chy, M.N.U.; Sami, S.A.; Baral, S.K.; Majumder, M.; Tareq, A.M.; Amin, M.N.; Shahriar, A.; Uddin, M.Z.; et al. Biochemical and computational approach of selected phytocompounds from tinospora crispa in the management of COVID-19. Molecules 2020, 25, 3936.Galán-Freyle, N.J.; Ospina-Castro, M.L.; Medina-González, A.R.; Villarreal-González, R.; Hernández-Rivera, S.P.; Pacheco- Londoño, L.C. Artificial intelligence assisted mid-infrared laser spectroscopy in situ detection of petroleum in soils. Appl. Sci. 2020, 10, 1319.Pacheco-Londoño, L.C.; Warren, E.; Galán-Freyle, N.J.; Villarreal-González, R.; Aparicio-Bolaño, J.A.; Ospina-Castro, M.L.; Shih, W.C.; Hernández-Rivera, S.P. Mid-infrared laser spectroscopy detection and quantification of explosives in soils using multivariate analysis and artificial intelligence. Appl. Sci. 2020, 10, 4178.Hammad, M.; Maher, A.; Wang, K.; Jiang, F.; Amrani, M. Detection of abnormal heart conditions based on characteristics of ECG signals. Measurement 2018, 125, 634–644.Alghamdi, A.S.; Polat, K.; Alghoson, A.; Alshdadi, A.A.; Abd El-Latif, A.A. A novel blood pressure estimation method based on the classification of oscillometric waveforms using machine-learning methods. Appl. Acoust. 2020, 164, 107279.Khalil, H.; El-Hag, N.; Sedik, A.; El-Shafie, W.; Mohamed, A.E.N.; Khalaf, A.A.M.; El-Banby, G.M.; Abd El-Samie, F.I.; El-Fishawy, A.S. Classification of diabetic retinopathy types based on Convolution Neural Network (CNN). Menoufia J. Electron. Eng. Res. 2019, 28, 126–153.Haggag, N.T.; Sedik, A.; Elbanby, G.M.; El-Fishawy, A.S.; Khalaf, A.A. Classification of Corneal Pattern Based on Convolutional LSTM Neural Network. Menoufia J. Electr. Eng. Res. 2019, 28, 158–162.Sedik, A.; Iliyasu, A.M.; Abd El-Rahiem, B.; Abdel Samea, M.E.; Abdel-Raheem, A.; Hammad, M.; Peng, J.; Abd El-Samie, F.E.; Abd El-Latif, A.A. Deploying machine and deep learning models for efficient data-augmented detection of COVID-19 infections. Viruses 2020, 12, 769.Zhavoronkov, A. Artificial intelligence for drug discovery, biomarker development, and generation of novel chemistry. Mol. Pharm. 2018, 15, 4311–4313.Yan, L.; Zhang, H.T.; Xiao, Y.; Wang, M.; Sun, C.; Liang, J.; Li, S.; Zhang, M.; Guo, Y.; Xiao, Y.; et al. Prediction of criticality in patients with severe Covid-19 infection using three clinical features: A machine learning-based prognostic model with clinical data in Wuhan. medRxiv 2020.Kriegova, E.; Fillerova, R.; Kvapil, P. Direct-RT-qPCR detection of SARS-CoV-2 without RNA extraction as part of a COVID-19 testing strategy: From sample to result in one hour. Diagnostics 2020, 10, 605.Carter, L.J.; Garner, L.V.; Smoot, J.W.; Li, Y.; Zhou, Q.; Saveson, C.J.; Sasso, J.M.; Gregg, A.C.; Soares, D.J.; Beskid, T.R.; et al. Assay techniques and test development for COVID-19 diagnosis. ACS Cent. Sci. 2020, 6, 591–605.Yip, C.C.Y.; Sridhar, S.; Leung, K.H.; Ng, A.C.K.; Chan, K.H.; Chan, J.F.W.; Tsang, O.T.Y.; Hung, I.F.N.; Cheng, V.C.C.; Yuen, K.Y.; et al. Development and evaluation of novel and highly sensitive single-tube nested real-time RT-PCR assays for SARS-CoV-2 detection. Int. J. Mol. Sci. 2020, 21, 5674.Chow, F.W.N.; Chan, T.T.Y.; Tam, A.R.; Zhao, S.; Yao, W.; Fung, J.; Cheng, F.K.K.; Lo, G.C.S.; Chu, S.; Aw-Yong, K.L.; et al. A rapid, simple, inexpensive, and mobile colorimetric assay COVID-19-LAMP for mass on-site screening of COVID-19. Int. J. Mol. Sci. 2020, 21, 5380.Allam, M.; Cai, S.; Ganesh, S.; Venkatesan, M.; Doodhwala, S.; Song, Z.; Hu, T.; Kumar, A.; Heit, J.; Coskun, A.F.; et al. COVID-19 diagnostics, tools, and prevention. Diagnostics 2020, 10, 409.Yuan, X.; Yang, C.; He, Q.; Chen, J.; Yu, D.; Li, J.; Zhai, S.; Qin, Z.; Du, K.; Chu, Z.; et al. Current and perspective diagnostic techniques for COVID-19. ACS Infect. Dis. 2020, 6, 1998–2016.Chauhan, D.S.; Prasad, R.; Srivastava, R.; Jaggi, M.; Chauhan, S.C.; Yallapu, M.M. Comprehensive review on current interventions, diagnostics, and nanotechnology perspectives against SARS-CoV-2. Bioconjug. Chem. 2020, 31, 2021–2045.Epanechnikov, V.A. Non-parametric estimation of a multivariate probability density. Theory Probab. Its Appl. 1969, 14, 153–158.Rosenblatt, M. Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 1956, 27, 832–837.Parzen, E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33, 1065–1076.Fabian Pedregosa, G.V.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045.Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API design for machine learning software: Experiences from the scikit-learn project. In Proceedings of the European Conference on Machine Learning and Principles and Practices of Knowledge Discovery in Databases, Prague, Czech Republic, 23 September 2013.Sede BarranquillaMaestría en Gestión y Emprendimiento TecnológicoORIGINALPDF.pdfPDF.pdfapplication/pdf3097160https://bonga.unisimon.edu.co/bitstreams/1a367f00-9d95-45e6-9d0f-0a96c7dd6567/download19357b71028b49cf6ffd65a219cc71bcMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/67d565b4-3c62-4513-96d0-b82cca7307e9/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-83000https://bonga.unisimon.edu.co/bitstreams/0bc116d9-145e-4e97-9fd2-50552d2c137a/download2a1661e5960a7bab4fd8dda692fb677cMD53TEXTAnomaly_Identification_During_Polymerase_Chain_Reaction_Detecting_Artículo.pdf.txtAnomaly_Identification_During_Polymerase_Chain_Reaction_Detecting_Artículo.pdf.txtExtracted texttext/plain56914https://bonga.unisimon.edu.co/bitstreams/8ba9b1a5-dc04-41d0-a0f4-e564188e6ead/downloada3eb6a334df157d7c851370f0d53e202MD54PDF.txtPDF.txtExtracted texttext/plain61147https://bonga.unisimon.edu.co/bitstreams/ec78b626-8c12-43c2-9b4d-906f059fe7bb/downloadc1859f95aef2509c1be33d7edc7b8752MD56PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain61147https://bonga.unisimon.edu.co/bitstreams/d92277b3-48c7-4a27-bc26-9692d58ca66e/downloadc1859f95aef2509c1be33d7edc7b8752MD58THUMBNAILAnomaly_Identification_During_Polymerase_Chain_Reaction_Detecting_Artículo.pdf.jpgAnomaly_Identification_During_Polymerase_Chain_Reaction_Detecting_Artículo.pdf.jpgGenerated Thumbnailimage/jpeg23632https://bonga.unisimon.edu.co/bitstreams/989d4106-9add-4454-be06-f7bbad5ab92d/downloadf547975df7c83161c80f029c45c86c88MD55PDF.jpgPDF.jpgGenerated Thumbnailimage/jpeg5807https://bonga.unisimon.edu.co/bitstreams/80822da5-df09-41e4-b475-4267c599dfac/downloadc0d4a2fe7bd269c0cc176a80c08847c5MD57PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5807https://bonga.unisimon.edu.co/bitstreams/a62932dc-549e-459c-a8f5-1d9b8997fb7e/downloadc0d4a2fe7bd269c0cc176a80c08847c5MD5920.500.12442/9229oai:bonga.unisimon.edu.co:20.500.12442/92292024-08-14 21:52:01.484http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalrestrictedhttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.co