Targeting epimastigotes of trypanosoma cruzi with a peptide isolated from a phage display random library

Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi, which is transmitted by insects of the family Reduviidae. Since conventional treatments with nitroheterocyclic drugs show serious adverse reactions an...

Full description

Autores:
Sáenz Garcia, José L.
Yamanaka, Isabel B.
Pacheco Lugo, Lisandro A.
Miranda, Juliana S.
Córneo, Emily S.
Machado de Ávila, Ricardo A.
De Moura, Juliana F.
DaRocha, Wanderson D.
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/4528
Acceso en línea:
https://hdl.handle.net/20.500.12442/4528
Palabra clave:
Phage display
Trypanosoma cruzi
Surface
Epimastigotes
EPI18
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_9aabc27862282b24c79f5bc1c6990505
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/4528
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Targeting epimastigotes of trypanosoma cruzi with a peptide isolated from a phage display random library
title Targeting epimastigotes of trypanosoma cruzi with a peptide isolated from a phage display random library
spellingShingle Targeting epimastigotes of trypanosoma cruzi with a peptide isolated from a phage display random library
Phage display
Trypanosoma cruzi
Surface
Epimastigotes
EPI18
title_short Targeting epimastigotes of trypanosoma cruzi with a peptide isolated from a phage display random library
title_full Targeting epimastigotes of trypanosoma cruzi with a peptide isolated from a phage display random library
title_fullStr Targeting epimastigotes of trypanosoma cruzi with a peptide isolated from a phage display random library
title_full_unstemmed Targeting epimastigotes of trypanosoma cruzi with a peptide isolated from a phage display random library
title_sort Targeting epimastigotes of trypanosoma cruzi with a peptide isolated from a phage display random library
dc.creator.fl_str_mv Sáenz Garcia, José L.
Yamanaka, Isabel B.
Pacheco Lugo, Lisandro A.
Miranda, Juliana S.
Córneo, Emily S.
Machado de Ávila, Ricardo A.
De Moura, Juliana F.
DaRocha, Wanderson D.
dc.contributor.author.none.fl_str_mv Sáenz Garcia, José L.
Yamanaka, Isabel B.
Pacheco Lugo, Lisandro A.
Miranda, Juliana S.
Córneo, Emily S.
Machado de Ávila, Ricardo A.
De Moura, Juliana F.
DaRocha, Wanderson D.
dc.subject.eng.fl_str_mv Phage display
Trypanosoma cruzi
Surface
Epimastigotes
EPI18
topic Phage display
Trypanosoma cruzi
Surface
Epimastigotes
EPI18
description Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi, which is transmitted by insects of the family Reduviidae. Since conventional treatments with nitroheterocyclic drugs show serious adverse reactions and have questionable efficiency, different research groups have investigated polypeptide-based approaches to interfere with the parasite cell cycle in other Trypanosomatids. These strategies are supported by the fact that surface players are candidates to develop surface ligands that impair function since they may act as virulence factors. In this study, we used a phage display approach to identify peptides from one library-LX8CX8 (17 aa) (where X corresponds to any amino acid). After testing different biopanning conditions using live or fixed epimastigotes, 10 clones were sequenced that encoded the same peptide, named here as EPI18. The bacteriophage expressing EPI18 binds to epimastigotes from distinct strains of T. cruzi. To confirm these results, this peptide was synthetized, biotinylated, and assayed using flow cytometry and confocal microscopy analyses. These assays confirmed the specificity of the binding capacity of EPI18 toward epimastigote surfaces. Our findings suggest that EPI18 may have potential biotechnological applications that include peptide-based strategies to control parasite transmission.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-01-16T19:35:00Z
dc.date.available.none.fl_str_mv 2020-01-16T19:35:00Z
dc.date.issued.none.fl_str_mv 2020-01
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 00144894
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/4528
identifier_str_mv 00144894
url https://hdl.handle.net/20.500.12442/4528
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.eng.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.eng.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.spa.fl_str_mv Elsevier
dc.source.eng.fl_str_mv Experimental Parasitology
dc.source.none.fl_str_mv (2020)
institution Universidad Simón Bolívar
dc.source.uri.none.fl_str_mv https://doi.org/10.1016/j.exppara.2020.107830
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/8c9d5d77-624b-4789-b3b8-df4d5950f748/download
https://bonga.unisimon.edu.co/bitstreams/1ff179fd-ea4e-48a2-8f9b-01acec270985/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100479811846144
spelling Sáenz Garcia, José L.52e070f9-7c62-4873-bffa-f4a5971d8934Yamanaka, Isabel B.ed7d2053-ed46-4599-9841-54032a7001d5Pacheco Lugo, Lisandro A.b33a693b-0c82-4787-97aa-77ba97ed7da2Miranda, Juliana S.6039158e-5574-4d9e-9737-d2dc025ee2faCórneo, Emily S.fd1906ae-2d75-4ab6-878c-2d9496c00a0eMachado de Ávila, Ricardo A.5056728d-beb2-4492-aeab-1647273770d4De Moura, Juliana F.09933af4-b340-4e77-ac1e-505184fa638bDaRocha, Wanderson D.a9ad1c3a-be1c-40d9-b611-9474f6cb54b42020-01-16T19:35:00Z2020-01-16T19:35:00Z2020-0100144894https://hdl.handle.net/20.500.12442/4528Chagas disease, also known as American trypanosomiasis, is a potentially life-threatening illness caused by the protozoan parasite Trypanosoma cruzi, which is transmitted by insects of the family Reduviidae. Since conventional treatments with nitroheterocyclic drugs show serious adverse reactions and have questionable efficiency, different research groups have investigated polypeptide-based approaches to interfere with the parasite cell cycle in other Trypanosomatids. These strategies are supported by the fact that surface players are candidates to develop surface ligands that impair function since they may act as virulence factors. In this study, we used a phage display approach to identify peptides from one library-LX8CX8 (17 aa) (where X corresponds to any amino acid). After testing different biopanning conditions using live or fixed epimastigotes, 10 clones were sequenced that encoded the same peptide, named here as EPI18. The bacteriophage expressing EPI18 binds to epimastigotes from distinct strains of T. cruzi. To confirm these results, this peptide was synthetized, biotinylated, and assayed using flow cytometry and confocal microscopy analyses. These assays confirmed the specificity of the binding capacity of EPI18 toward epimastigote surfaces. Our findings suggest that EPI18 may have potential biotechnological applications that include peptide-based strategies to control parasite transmission.pdfengElsevierAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_16ecExperimental Parasitology(2020)https://doi.org/10.1016/j.exppara.2020.107830Phage displayTrypanosoma cruziSurfaceEpimastigotesEPI18Targeting epimastigotes of trypanosoma cruzi with a peptide isolated from a phage display random libraryarticlehttp://purl.org/coar/resource_type/c_6501Adade et al., 2013 C.M. Adade, I.R.S. Oliveira, J.A.R. Pais, T. Souto-Padrón Melittin peptide kills Trypanosoma cruzi parasites by inducing different cell death pathways Toxicon, 69 (2013), pp. 227-239, 10.1016/j.toxicon.2013.03.011Altschul et al., 1990 S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman Basic local alignment search tool J. Mol. Biol., 215 (1990), pp. 403-410, 10.1016/S0022-2836(05)80360-2Balczun et al., 2012 C. Balczun, J. Siemanowski, J.K. Pausch, S. Helling, K. Marcus, C. Stephan, et al. Intestinal aspartate proteases TiCatD and TiCatD2 of the haematophagous bug Triatoma infestans (Reduviidae): sequence characterisation, expression pattern and characterisation of proteolytic activity Insect Biochem. Mol. Biol., 42 (2012), pp. 240-250, 10.1016/j.ibmb.2011.12.006Beard et al., 2002 C.B. Beard, C. Cordon-Rosales, R.V. Durvasula Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission Annu. Rev. Entomol., 47 (2002), pp. 123-141, 10.1146/annurev.ento.47.091201.145144Bongio et al., 2015 N.J. Bongio, D.J. Lampe Inhibition of Plasmodium berghei development in mosquitoes by effector proteins secreted from Asaia sp. bacteria using a novel native secretion signal G. Favia (Ed.), PLoS One, 10 (2015), Article e0143541, 10.1371/journal.pone.0143541Bonnycastle et al., 1996 L.L.C. Bonnycastle, J.S. Mehroke, M. Rashed, X. Gong, J.K. Scott Probing the basis of antibody reactivity with a panel of constrained peptide libraries displayed by filamentous phage J. Mol. Biol., 258 (1996), pp. 747-762, 0.1006/jmbi.1996.0284Bontempi et al., 2015 I.A. Bontempi, M.H. Vicco, G. Cabrera, S.R. Villar, F.B. González, E.A. Roggero, et al. Efficacy of a trans-sialidase-ISCOMATRIX subunit vaccine candidate to protect against experimental Chagas disease Vaccine, 33 (2015), pp. 1274-1283, 10.1016/j.vaccine.2015.01.044Borges et al., 2006 E.C. Borges, E.M.M. Machado, E.S. Garcia, P. Azambuja Trypanosoma cruzi: effects of infection on cathepsin D activity in the midgut of Rhodnius prolixus Exp. Parasitol., 112 (2006), pp. 130-133, 10.1016/j.exppara.2005.09.008Brenière et al., 2016 S.F. Brenière, E. Waleckx, C. Barnabé Over six thousand Trypanosoma cruzi strains classified into discrete typing units (DTUs): attempt at an inventory. Debrabant A, editor PLoS Neglected Trop. Dis., 10 (2016), Article e0004792, 0.1371/journal.pntd.0004792Buchini et al., 2008 S. Buchini, A. Buschiazzo, S.G. Withers A new generation of specific Trypanosoma cruzi trans-sialidase inhibitors Angew. Chem. Int. Ed., 47 (2008), pp. 2700-2703, 10.1002/anie.200705435Contreras et al., 1985 V.T. Contreras, J.M. Salles, N. Thomas, C.M. Morel, S. Goldenberg In vitro differentiation of Trypanosoma cruzi under chemically defined conditions Mol. Biochem. Parasitol., 16 (1985), pp. 315-327, 10.1016/0166-6851(85)90073-8Cordero et al., 2009 E.M. Cordero, E.S. Nakayasu, L.G. Gentil, N. Yoshida, I.C. Almeida, J.F. da Silveira Proteomic analysis of detergent-solubilized membrane proteins from insect-developmental forms of Trypanosoma cruzi † J. Proteome Res., 8 (2009), pp. 3642-3652, 10.1021/pr800887uDias, 2007 J.C.P. Dias Southern Cone Initiative for the elimination of domestic populations of Triatoma infestans and the interruption of transfusional Chagas disease. Historical aspects, present situation, and perspectives Mem. Inst. Oswaldo Cruz, 102 (Suppl. 1) (2007), pp. 11-18, 10.1590/s0074-02762007005000092Durvasula et al., 1997 R.V. Durvasula, A. Gumbs, A. Panackal, O. Kruglov, S. Aksoy, R.B. Merrifield, et al. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria Proc. Natl. Acad. Sci. U. S. A., 94 (1997), pp. 3274-3278, 10.1073/pnas.94.7.3274El-Sayed, 2005 N.M. El-Sayed The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease Science, 309 (2005), pp. 409-415, 10.1126/science.1112631Flower et al., 2000 D.R. Flower, A.C.T. North, C.E. Sansom The lipocalin protein family: structural and sequence overview Biochim Biophys Acta BBA - Protein Struct Mol Enzymol., 1482 (2000), pp. 9-24, 10.1016/S0167-4838(00)00148-5Ghosh et al., 2001 A.K. Ghosh, P.E.M. Ribolla, M. Jacobs-Lorena Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library Proc. Natl. Acad. Sci., 98 (2001), pp. 13278-13281, 10.1073/pnas.241491198Gourbière et al., 2012 S. Gourbière, P. Dorn, F. Tripet, E. Dumonteil Genetics and evolution of triatomines: from phylogeny to vector control Heredity, 108 (2012), pp. 190-202, 10.1038/hdy.2011.71Hall, 1999 T.A. Hall BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT Nucleic Acids Symp. Ser., 41 (1999), pp. 95-98Hansen et al., 2015 P.R. Hansen, A. Oddo Fmoc solid-phase peptide synthesis G. Houen (Ed.), Peptide Antibodies, Springer New York, New York, NY (2015), pp. 33-50, 10.1007/978-1-4939-2999-3_5Kato et al., 2017 H. Kato, R.C. Jochim, E.A. Gomez, S. Tsunekawa, J.G. Valenzuela, Y. Hashiguchi Salivary gland transcripts of the kissing bug, Panstrongylus chinai, a vector of Chagas disease Acta Trop., 174 (2017), pp. 122-129, 10.1016/j.actatropica.2017.06.022Khusal et al., 2015 K.G. Khusal, R.R. Tonelli, E.C. Mattos, C.O. Soares, B.M. Di Genova, M.A. Juliano, et al. Prokineticin receptor identified by phage display is an entry receptor for Trypanosoma cruzi into mammalian cells Parasitol. Res., 114 (1) (2015), pp. 155-165, 10.1007/s00436-014-4172-6Li et al., 2016 Y. Li, S. Shah-Simpson, K. Okrah, A.T. Belew, J. Choi, K.L. Caradonna, et al. Transcriptome remodeling in Trypanosoma cruzi and human cells during intracellular infection. Clayton C PLoS Pathog., 12 (2016), Article e1005511, 10.1371/journal.ppat.1005511Luque-Ortega et al., 2012 J.R. Luque-Ortega, B.G. de la Torre, V. Hornillos, J.-M. Bart, C. Rueda, M. Navarro, et al. Defeating Leishmania resistance to Miltefosine (hexadecylphosphocholine) by peptide-mediated drug smuggling: a proof of mechanism for trypanosomatid chemotherapy J. Control. Release, 161 (2012), pp. 835-842, 10.1016/j.jconrel.2012.05.023McWilliam et al., 2013 H. McWilliam, W. Li, M. Uludag, S. Squizzato, Y.M. Park, N. Buso, et al. Analysis tool web services from the EMBL-EBI Nucleic Acids Res., 41 (2013), pp. W597-600, 10.1093/nar/gkt376Mello et al., 2017 C.P. Mello, D.B. Lima, RRPPB de Menezes, I.C.J. Bandeira, L.D. Tessarolo, T.L. Sampaio, et al. Evaluation of the antichagasic activity of batroxicidin, a cathelicidin-related antimicrobial peptide found in Bothrops atrox venom gland Toxicon, 130 (2017), pp. 56-62, 10.1016/j.toxicon.2017.02.031Morillo et al., 2015 C.A. Morillo, J.A. Marin-Neto, A. Avezum, S. Sosa-Estani, A. Rassi, F. Rosas, et al. Randomized trial of benznidazole for chronic Chagas' cardiomyopathy N. Engl. J. Med., 373 (2015), pp. 1295-1306, 10.1056/NEJMoa1507574Queiroz et al., 2013 R.M.L. Queiroz, S. Charneau, F.N. Motta, J.M. Santana, P. Roepstorff, C.A.O. Ricart Comprehensive proteomic analysis of trypanosoma cruzi epimastigote cell surface proteins by two complementary methods J. Proteome Res., 12 (2013), pp. 3255-3263, 10.1021/pr400110hRhaiem and Houimel, 2016 R.B. Rhaiem, M. Houimel Targeting Leishmania major parasite with peptides derived from a combinatorial phage display library Acta Trop., 159 (2016), pp. 11-19, 10.1016/j.actatropica.2016.03.018Samuels et al., 2013 A.M. Samuels, E.H. Clark, G. Galdos-Cardenas, R.E. Wiegand, L. Ferrufino, S. Menacho, et al. Epidemiology of and impact of insecticide spraying on Chagas disease in communities in the Bolivian Chaco P.J. McCall (Ed.), PLoS Neglected Trop. Dis., 7 (2013), p. e2358, 10.1371/journal.pntd.0002358Serna et al., 2014 C. Serna, J.A. Lara, S.P. Rodrigues, A.F. Marques, I.C. Almeida, R.A. Maldonado A synthetic peptide from Trypanosoma cruzi mucin-like associated surface protein as candidate for a vaccine against Chagas disease Vaccine, 32 (2014), pp. 3525-3532, 10.1016/j.vaccine.2014.04.026Wang and Jacobs-Lorena, 2013 S. Wang, M. Jacobs-Lorena Genetic approaches to interfere with malaria transmission by vector mosquitoes Trends Biotechnol., 31 (2013), pp. 185-193, 10.1016/j.tibtech.2013.01.001Zingales et al., 2009 B. Zingales, S.G. Andrade, M.R.S. Briones, D.A. Campbell, E. Chiari, O. Fernandes, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI Mem. Inst. Oswaldo Cruz, 104 (2009), pp. 1051-1054, 10.1590/s0074-02762009000700021Zou et al., 2017 L. Zou, Q. Peng, P. Wang, B. Zhou Progress in research and application of HIV-1 TAT-derived cell-penetrating peptide J. Membr. Biol., 250 (2017), pp. 115-122, 10.1007/s00232-016-9940-zCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/8c9d5d77-624b-4789-b3b8-df4d5950f748/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/1ff179fd-ea4e-48a2-8f9b-01acec270985/download733bec43a0bf5ade4d97db708e29b185MD5320.500.12442/4528oai:bonga.unisimon.edu.co:20.500.12442/45282024-08-14 21:52:41.124http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalmetadata.onlyhttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u