Algebraic and qualitative remarks about the family yy′ = (αxm+k–1 + βxm–k–1)y + γx2m–2k–1

The aim of this paper is the analysis, from algebraic point of view and singularities studies, of the 5-parametric family of differential equations yy′=(αxm+k−1+βxm−k−1)y+γx2m−2k−1,y′=dydx where a, b, c ∈ ℂ, m, k ∈ ℤ and α=a(2m+k)β=b(2m−k),γ=−(a2mx4k+cx2k+b2m). This family is very important because...

Full description

Autores:
Rodríguez-Contreras, Jorge
Acosta-Humánez, Primitivo B.
Reyes-Linero, Alberto
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/4331
Acceso en línea:
https://hdl.handle.net/20.500.12442/4331
Palabra clave:
Critical points
Integrability
Gegenbauer equation
Legendre equation
Liénard equation
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_9a40ff2debc0e8a814a84f11cf7a111e
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/4331
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Algebraic and qualitative remarks about the family yy′ = (αxm+k–1 + βxm–k–1)y + γx2m–2k–1
title Algebraic and qualitative remarks about the family yy′ = (αxm+k–1 + βxm–k–1)y + γx2m–2k–1
spellingShingle Algebraic and qualitative remarks about the family yy′ = (αxm+k–1 + βxm–k–1)y + γx2m–2k–1
Critical points
Integrability
Gegenbauer equation
Legendre equation
Liénard equation
title_short Algebraic and qualitative remarks about the family yy′ = (αxm+k–1 + βxm–k–1)y + γx2m–2k–1
title_full Algebraic and qualitative remarks about the family yy′ = (αxm+k–1 + βxm–k–1)y + γx2m–2k–1
title_fullStr Algebraic and qualitative remarks about the family yy′ = (αxm+k–1 + βxm–k–1)y + γx2m–2k–1
title_full_unstemmed Algebraic and qualitative remarks about the family yy′ = (αxm+k–1 + βxm–k–1)y + γx2m–2k–1
title_sort Algebraic and qualitative remarks about the family yy′ = (αxm+k–1 + βxm–k–1)y + γx2m–2k–1
dc.creator.fl_str_mv Rodríguez-Contreras, Jorge
Acosta-Humánez, Primitivo B.
Reyes-Linero, Alberto
dc.contributor.author.none.fl_str_mv Rodríguez-Contreras, Jorge
Acosta-Humánez, Primitivo B.
Reyes-Linero, Alberto
dc.subject.eng.fl_str_mv Critical points
Integrability
Gegenbauer equation
Legendre equation
Liénard equation
topic Critical points
Integrability
Gegenbauer equation
Legendre equation
Liénard equation
description The aim of this paper is the analysis, from algebraic point of view and singularities studies, of the 5-parametric family of differential equations yy′=(αxm+k−1+βxm−k−1)y+γx2m−2k−1,y′=dydx where a, b, c ∈ ℂ, m, k ∈ ℤ and α=a(2m+k)β=b(2m−k),γ=−(a2mx4k+cx2k+b2m). This family is very important because include Van Der Pol equation. Moreover, this family seems to appear as exercise in the celebrated book of Polyanin and Zaitsev. Unfortunately, the exercise presented a typo which does not allow to solve correctly it. We present the corrected exercise, which corresponds to the title of this paper. We solve the exercise and afterwards we make algebraic and of singularities studies to this family of differential equations.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-12T21:04:12Z
dc.date.available.none.fl_str_mv 2019-11-12T21:04:12Z
dc.date.issued.none.fl_str_mv 2019
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 23915455
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/4331
identifier_str_mv 23915455
url https://hdl.handle.net/20.500.12442/4331
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv De Gruyter
dc.source.eng.fl_str_mv Open Mathematics
Vol. 17, Issue 1 (2019)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv DOI: https://doi.org/10.1515/math-2019-0100
dc.source.bibliographicCitation.eng.fl_str_mv Guckenheimer J., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag New York, 1983.
Guckenheimer J., Hoffman K., Weckesser W., The forced Van der Pol equation I: The slow flow and its bifurcations, SIAM J. Applied Dynamical Systems, 2003, 2, 1–35.
Kapitaniak T., Chaos for Engineers: Theory, Applications and Control, Springer, Berlin, Germany, 1998.
Nagumo J., Arimoto S., Yoshizawa S., An active pulse transmission line simulating nerve axon, Proc. IRE, 1962, 50, 2061– 2070.
Nemytskii V.V., Stepanov V.V., Qualitative Theory of Differential Equations, Princeton University Press, Princeton, 1960.
Perko L., Differential equations and Dynamical systems, Third Edition, Springer-Verlag New York, Inc, 2001.
Van der Pol B., Van der Mark J., Frequency demultiplication, Nature, 1927, 120, 363–364.
Acosta-Humánez P.B., La Teoría de Morales-Ramis y el Algoritmode Kovacic, LecturasMatemáticas, Volumen Especial, 2006, 21–56.
Acosta-Humánez P.B., Pantazi Ch., Darboux Integrals for Schrodinger Planar Vector Fields via Darboux Transformations, SIGMA Symmetry Integrability Geom. Methods Appl., 2012, 8, 043, arXiv:1111.0120.
Morales-Ruiz J., Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Birkhäuser, Basel, 1999.
Van der Put M., Singer M., Galois Theory in Linear Differential Equations, Springer-Verlag New York, 2003.
Weil J.A., Constant et polynómes de Darboux en algèbre différentielle: applications aux systèmes différentiels linéaires, Doctoral thesis, 1995.
Acosta-Humánez P.B., Galoisian Approach to Supersymmetric Quantum Mechanics, PhD Thesis, Barcelona, 2009, arXiv:0906.3532.
Acosta-Humánez P.B., Blázquez-Sanz D., Non-integrability of some Hamiltonians with rational potentials, Discrete Contin. Dyn. Syst. Ser. B, 2008, 10, 265–293.
Acosta-Humánez P., Morales-Ruiz J., Weil J.-A., Galoisian approach to integrability of Schrödinger Equation, Rep. Math. Phys., 2011, 67(3), 305–374.
Polyanin A.D., Zaitsev V.F., Handbook of exact solutions for ordinary differential equations, Second Edition, Chapman and Hall, Boca Raton, 2003.
Acosta-Humánez P.B., Lázaro J.T., Morales-Ruiz J.J., Pantazi Ch., On the integrability of polynomial fields in the plane by means of Picard-Vessiot theory, Discrete Contin. Dyn. Syst., 2015, 35(5), 1767–1800.
Drumortier F., Llibre J., Artés J.C., Qualitative theory of planar differential systems, Springer-Verlag Berlin Heidelberg, 2006.
dc.source.bibliographicCitation.spa.fl_str_mv Acosta-Humánez P.B., Perez J., Teoría de Galois diferencial: una aproximación, Matemáticas: Enseãnza Universitaria, 2007, 91–102.
Acosta-Humánez P.B., Perez J., Una introducción teoría de Galois diferencial, Boletín deMatemáticas Nueva Serie, 2004, 11, 138–149.
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/904f782b-e830-43c1-bd4b-b04c6eb72a5a/download
https://bonga.unisimon.edu.co/bitstreams/b8b623de-5031-4cc5-8814-2530651838ed/download
https://bonga.unisimon.edu.co/bitstreams/ffc38321-3224-4932-83fb-6438a1d5c031/download
https://bonga.unisimon.edu.co/bitstreams/fe06eec4-8f47-4488-8832-7eb5eae0fadb/download
https://bonga.unisimon.edu.co/bitstreams/30d7ca95-5ee7-4287-968a-6786511c4626/download
bitstream.checksum.fl_str_mv 9bb5cf6ee8358fb07eea709bdca8ae34
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
c4220b82a14a829815bc05d3e423df19
eba38ff5376c48befe7212b285336dc3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076085603663872
spelling Rodríguez-Contreras, Jorge73696779-f908-4efd-bd6a-8a8f93f60f4cAcosta-Humánez, Primitivo B.99e6835c-988c-4178-9496-9266aab5f6c1Reyes-Linero, Albertof9429574-f2c4-4944-8987-8f6cd54649502019-11-12T21:04:12Z2019-11-12T21:04:12Z201923915455https://hdl.handle.net/20.500.12442/4331The aim of this paper is the analysis, from algebraic point of view and singularities studies, of the 5-parametric family of differential equations yy′=(αxm+k−1+βxm−k−1)y+γx2m−2k−1,y′=dydx where a, b, c ∈ ℂ, m, k ∈ ℤ and α=a(2m+k)β=b(2m−k),γ=−(a2mx4k+cx2k+b2m). This family is very important because include Van Der Pol equation. Moreover, this family seems to appear as exercise in the celebrated book of Polyanin and Zaitsev. Unfortunately, the exercise presented a typo which does not allow to solve correctly it. We present the corrected exercise, which corresponds to the title of this paper. We solve the exercise and afterwards we make algebraic and of singularities studies to this family of differential equations.engDe GruyterAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Open MathematicsVol. 17, Issue 1 (2019)DOI: https://doi.org/10.1515/math-2019-0100Guckenheimer J., Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, Springer-Verlag New York, 1983.Guckenheimer J., Hoffman K., Weckesser W., The forced Van der Pol equation I: The slow flow and its bifurcations, SIAM J. Applied Dynamical Systems, 2003, 2, 1–35.Kapitaniak T., Chaos for Engineers: Theory, Applications and Control, Springer, Berlin, Germany, 1998.Nagumo J., Arimoto S., Yoshizawa S., An active pulse transmission line simulating nerve axon, Proc. IRE, 1962, 50, 2061– 2070.Nemytskii V.V., Stepanov V.V., Qualitative Theory of Differential Equations, Princeton University Press, Princeton, 1960.Perko L., Differential equations and Dynamical systems, Third Edition, Springer-Verlag New York, Inc, 2001.Van der Pol B., Van der Mark J., Frequency demultiplication, Nature, 1927, 120, 363–364.Acosta-Humánez P.B., La Teoría de Morales-Ramis y el Algoritmode Kovacic, LecturasMatemáticas, Volumen Especial, 2006, 21–56.Acosta-Humánez P.B., Pantazi Ch., Darboux Integrals for Schrodinger Planar Vector Fields via Darboux Transformations, SIGMA Symmetry Integrability Geom. Methods Appl., 2012, 8, 043, arXiv:1111.0120.Morales-Ruiz J., Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Birkhäuser, Basel, 1999.Van der Put M., Singer M., Galois Theory in Linear Differential Equations, Springer-Verlag New York, 2003.Weil J.A., Constant et polynómes de Darboux en algèbre différentielle: applications aux systèmes différentiels linéaires, Doctoral thesis, 1995.Acosta-Humánez P.B., Galoisian Approach to Supersymmetric Quantum Mechanics, PhD Thesis, Barcelona, 2009, arXiv:0906.3532.Acosta-Humánez P.B., Blázquez-Sanz D., Non-integrability of some Hamiltonians with rational potentials, Discrete Contin. Dyn. Syst. Ser. B, 2008, 10, 265–293.Acosta-Humánez P., Morales-Ruiz J., Weil J.-A., Galoisian approach to integrability of Schrödinger Equation, Rep. Math. Phys., 2011, 67(3), 305–374.Polyanin A.D., Zaitsev V.F., Handbook of exact solutions for ordinary differential equations, Second Edition, Chapman and Hall, Boca Raton, 2003.Acosta-Humánez P.B., Lázaro J.T., Morales-Ruiz J.J., Pantazi Ch., On the integrability of polynomial fields in the plane by means of Picard-Vessiot theory, Discrete Contin. Dyn. Syst., 2015, 35(5), 1767–1800.Drumortier F., Llibre J., Artés J.C., Qualitative theory of planar differential systems, Springer-Verlag Berlin Heidelberg, 2006.Acosta-Humánez P.B., Perez J., Teoría de Galois diferencial: una aproximación, Matemáticas: Enseãnza Universitaria, 2007, 91–102.Acosta-Humánez P.B., Perez J., Una introducción teoría de Galois diferencial, Boletín deMatemáticas Nueva Serie, 2004, 11, 138–149.Critical pointsIntegrabilityGegenbauer equationLegendre equationLiénard equationAlgebraic and qualitative remarks about the family yy′ = (αxm+k–1 + βxm–k–1)y + γx2m–2k–1articlehttp://purl.org/coar/resource_type/c_6501ORIGINALAlgebraic_and_qualitative_remarks_about_the_family.pdfAlgebraic_and_qualitative_remarks_about_the_family.pdfPDFapplication/pdf629638https://bonga.unisimon.edu.co/bitstreams/904f782b-e830-43c1-bd4b-b04c6eb72a5a/download9bb5cf6ee8358fb07eea709bdca8ae34MD54CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/b8b623de-5031-4cc5-8814-2530651838ed/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/ffc38321-3224-4932-83fb-6438a1d5c031/download733bec43a0bf5ade4d97db708e29b185MD53TEXTAlgebraic_and_qualitative_remarks_about_the_family.pdf.txtAlgebraic_and_qualitative_remarks_about_the_family.pdf.txtExtracted texttext/plain42427https://bonga.unisimon.edu.co/bitstreams/fe06eec4-8f47-4488-8832-7eb5eae0fadb/downloadc4220b82a14a829815bc05d3e423df19MD55THUMBNAILAlgebraic_and_qualitative_remarks_about_the_family.pdf.jpgAlgebraic_and_qualitative_remarks_about_the_family.pdf.jpgGenerated Thumbnailimage/jpeg1771https://bonga.unisimon.edu.co/bitstreams/30d7ca95-5ee7-4287-968a-6786511c4626/downloadeba38ff5376c48befe7212b285336dc3MD5620.500.12442/4331oai:bonga.unisimon.edu.co:20.500.12442/43312024-08-14 21:51:44.806http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u