Volumetric quantification in ovarian pathology using abdomino-pelvic computed tomography
Pathological ovary is categorized into cystic tumors, solid tumors and mixed, according to the content of the affected ovary. Accordingly, the degree of benignity or malignity thereof is established. The imaging study for the preliminary morphological assessment of PO is ultrasound, in its pelvic an...
- Autores:
-
Valbuena, O
Vera, M
Vera, M I
Gelvez-Almeida, E
Huérfano, Y
Borrero, M
Salazar-Torres, J
Salazar, W
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/5113
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/5113
- Palabra clave:
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_9753a530bba033758d20533591d52810 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/5113 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Volumetric quantification in ovarian pathology using abdomino-pelvic computed tomography |
title |
Volumetric quantification in ovarian pathology using abdomino-pelvic computed tomography |
spellingShingle |
Volumetric quantification in ovarian pathology using abdomino-pelvic computed tomography |
title_short |
Volumetric quantification in ovarian pathology using abdomino-pelvic computed tomography |
title_full |
Volumetric quantification in ovarian pathology using abdomino-pelvic computed tomography |
title_fullStr |
Volumetric quantification in ovarian pathology using abdomino-pelvic computed tomography |
title_full_unstemmed |
Volumetric quantification in ovarian pathology using abdomino-pelvic computed tomography |
title_sort |
Volumetric quantification in ovarian pathology using abdomino-pelvic computed tomography |
dc.creator.fl_str_mv |
Valbuena, O Vera, M Vera, M I Gelvez-Almeida, E Huérfano, Y Borrero, M Salazar-Torres, J Salazar, W |
dc.contributor.author.none.fl_str_mv |
Valbuena, O Vera, M Vera, M I Gelvez-Almeida, E Huérfano, Y Borrero, M Salazar-Torres, J Salazar, W |
description |
Pathological ovary is categorized into cystic tumors, solid tumors and mixed, according to the content of the affected ovary. Accordingly, the degree of benignity or malignity thereof is established. The imaging study for the preliminary morphological assessment of PO is ultrasound, in its pelvic and transvaginal modalities, for which wellestablished criteria are available. Once the ultrasound findings suggest malignancy, complementary studies such as abdominal-pelvic tomography images and tumor markers are requested. This type of images has challenging problems called noise, artifacts and low contrast. In this paper, in order to address these problems, a computational technique is proposed to characterize a pathological ovary. To do this, a thresholding and the median and gradient magnitude filters are applied, preliminarily, to complete the preprocessing stage. Then, during the segmentation, the algorithm of region growing is used to extract the threedimensional morphology of the pathological ovary. Using this morphology, the volume of the pathological ovary is calculated and it allows selecting the surgical-medical behavior to approach this kind of ovary. The validation of the proposed technique indicates that the results are promising. This technique can be useful in the detection and monitoring the diseases linked to pathological ovary. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-15T04:56:40Z |
dc.date.available.none.fl_str_mv |
2020-04-15T04:56:40Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.eng.fl_str_mv |
article |
dc.identifier.issn.none.fl_str_mv |
17426596 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/5113 |
identifier_str_mv |
17426596 |
url |
https://hdl.handle.net/20.500.12442/5113 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
dc.publisher.eng.fl_str_mv |
IOP Publishing |
dc.source.eng.fl_str_mv |
Journal of Physics: Conference Series Vol. 1403 (2019) |
institution |
Universidad Simón Bolívar |
dc.source.uri.eng.fl_str_mv |
https://iopscience.iop.org/article/10.1088/1742-6596/1414/1/012020 |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/1c21a873-5a66-4f1b-b9ec-805ad6f405a2/download https://bonga.unisimon.edu.co/bitstreams/1fdbdf1e-29c3-4a78-a3ed-a11e9544170f/download https://bonga.unisimon.edu.co/bitstreams/e4f8523c-2cae-4bd8-bcbc-c496f5c998f8/download https://bonga.unisimon.edu.co/bitstreams/4bb20eb9-ec29-4e80-8df7-d1167f37634c/download https://bonga.unisimon.edu.co/bitstreams/2f80f49d-5fec-4f46-872c-6d1b2ae8e00b/download https://bonga.unisimon.edu.co/bitstreams/eb92d031-a818-4a17-a45e-76e7f31765ec/download https://bonga.unisimon.edu.co/bitstreams/f0ca0223-3aa8-4052-b8a3-c1b7d64a902b/download |
bitstream.checksum.fl_str_mv |
868a73417879e6bc439106b74d21e1c2 4460e5956bc1d1639be9ae6146a50347 733bec43a0bf5ade4d97db708e29b185 58489329fd834d48869b4c3f98dd2ef9 6f627a8f9add621b664de4c227b4f1a1 387b9adecc62bceb6efa0465827f7cb8 161a42e8dcc2906bf8a807057b6cf837 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076122905706496 |
spelling |
Valbuena, O4286f2e0-ce46-49ce-a106-bd00c21a76e9Vera, M847eada8-99d3-4ff1-a613-ae3f62c30f9eVera, M I4c675edd-c7b6-4fee-87e2-feb90cfc363eGelvez-Almeida, E55062614-d175-4da1-834a-d7e54dcc92deHuérfano, Y001cc35e-75ac-48b8-9fd0-3c22464ff80fBorrero, Mfe2c6598-d41a-4440-a179-f32b49a37c90Salazar-Torres, J40a2a6c9-3e39-4994-9b5a-1c6112bd8000Salazar, Wf373f4f6-6308-4037-aa3f-bbcbde9cbe1b2020-04-15T04:56:40Z2020-04-15T04:56:40Z201917426596https://hdl.handle.net/20.500.12442/5113Pathological ovary is categorized into cystic tumors, solid tumors and mixed, according to the content of the affected ovary. Accordingly, the degree of benignity or malignity thereof is established. The imaging study for the preliminary morphological assessment of PO is ultrasound, in its pelvic and transvaginal modalities, for which wellestablished criteria are available. Once the ultrasound findings suggest malignancy, complementary studies such as abdominal-pelvic tomography images and tumor markers are requested. This type of images has challenging problems called noise, artifacts and low contrast. In this paper, in order to address these problems, a computational technique is proposed to characterize a pathological ovary. To do this, a thresholding and the median and gradient magnitude filters are applied, preliminarily, to complete the preprocessing stage. Then, during the segmentation, the algorithm of region growing is used to extract the threedimensional morphology of the pathological ovary. Using this morphology, the volume of the pathological ovary is calculated and it allows selecting the surgical-medical behavior to approach this kind of ovary. The validation of the proposed technique indicates that the results are promising. This technique can be useful in the detection and monitoring the diseases linked to pathological ovary.pdfengIOP PublishingAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Journal of Physics: Conference SeriesVol. 1403 (2019)https://iopscience.iop.org/article/10.1088/1742-6596/1414/1/012020Volumetric quantification in ovarian pathology using abdomino-pelvic computed tomographyarticlearticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Blaustein A 1977 Pathology of the female genital tract ed A Blaustein (New York: Springer) Anatomy and histology of the human ovary 438 Chapter 15Lu H, Arshad M, Thornton A, Avesani G, Cunnea P, Curry E, Kanavati F, Liang J, Nixon K, Williams S T, Ali Hassan M, Bowtell D D L, Gabra H, Fotopoulou C, Rockall A and Aboagye E O 2019 A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic and molecular-phenotypes of epithelial ovarian cancer Nature Communications 10 764Cigale B and Zazula D 2004 Segmentation of ovarian ultrasound images using cellular neural networks International Journal of Pattern Recognition and Artificial Intelligence 18 563Ramya M and Kiruthika V 2014 Fifth International Conference on Signal and Image Processing (Bangalore: IEEE) Automatic segmentation of ovarian follicle using k-meansSonigo C, Jankowski S, Yoo O, Trassard O, Bousquet N, Grynberg M, Beau I and Binart N 2018 High-throughput ovarian follicle counting by an innovative deep learning approach Scientific Reports 8 13499Pratt W 2007 Digital image processing (New York: John Wiley & Sons Inc)González R and Woods R 2001 Digital image processing (New Jersey: Prentice Hall)Petrou M and Bosdogianni P 2003 Image processing the fundamentals (New York: John Wiley & Sons Inc)Huérfano Y, Vera M, Mar A and Bravo A 2019 Integrating a gradient–based difference operator with machine learning techniques in right heart segmentation Journal of Physics: Conference Series 1160 012003Burden R and Faires D 2010 Numerical analysis (Mexico: Cengage Learning)Saénz F, Vera M, Huérfano Y, Molina V, Martinez L, Vera MI, Salazar W, Gelvez E, Salazar J, Valbuena O, Robles H, Bautista M and Arango J 2018 Brain Hematoma Computational Segmentation Journal of Physics: Conference Series 1126 012071Dice L 1945 Measures of the amount of ecologic association between species Ecology 26 29ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf562428https://bonga.unisimon.edu.co/bitstreams/1c21a873-5a66-4f1b-b9ec-805ad6f405a2/download868a73417879e6bc439106b74d21e1c2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/1fdbdf1e-29c3-4a78-a3ed-a11e9544170f/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/e4f8523c-2cae-4bd8-bcbc-c496f5c998f8/download733bec43a0bf5ade4d97db708e29b185MD53TEXTVolumetric_quantification_ovarian_pathology.pdf.txtVolumetric_quantification_ovarian_pathology.pdf.txtExtracted texttext/plain15970https://bonga.unisimon.edu.co/bitstreams/4bb20eb9-ec29-4e80-8df7-d1167f37634c/download58489329fd834d48869b4c3f98dd2ef9MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain16508https://bonga.unisimon.edu.co/bitstreams/2f80f49d-5fec-4f46-872c-6d1b2ae8e00b/download6f627a8f9add621b664de4c227b4f1a1MD56THUMBNAILVolumetric_quantification_ovarian_pathology.pdf.jpgVolumetric_quantification_ovarian_pathology.pdf.jpgGenerated Thumbnailimage/jpeg1293https://bonga.unisimon.edu.co/bitstreams/eb92d031-a818-4a17-a45e-76e7f31765ec/download387b9adecc62bceb6efa0465827f7cb8MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg3343https://bonga.unisimon.edu.co/bitstreams/f0ca0223-3aa8-4052-b8a3-c1b7d64a902b/download161a42e8dcc2906bf8a807057b6cf837MD5720.500.12442/5113oai:bonga.unisimon.edu.co:20.500.12442/51132024-08-14 21:53:04.829http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |