Mid-Infrared laser spectroscopy detection and quantification of explosives in soils using multivariate analysis and artificial intelligence

A tunable quantum cascade laser (QCL) spectrometer was used to develop methods for detecting and quantifying high explosives (HE) in soil based on multivariate analysis (MVA) and artificial intelligence (AI). For quantification, mixes of 2,4-dinitrotoluene (DNT) of concentrations from 0% to 20% w/w...

Full description

Autores:
Pacheco-Londoño, Leonardo C.
Warren, Eric
Galán-Freyle, Nataly J.
Villarreal-González, Reynaldo
Aparicio-Bolaño, Joaquín A.
Ospina-Castro, María L.
Shih, Wei-Chuan
Hernández-Rivera, Samuel P.
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/5967
Acceso en línea:
https://www.mdpi.com/2076-3417/10/12/4178
https://hdl.handle.net/20.500.12442/5967
Palabra clave:
Quantum cascade laser
Remote detection
Partial least squares
High explosives
Artificial intelligence
Machine learning
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_9506145ab441c376526e9e2e2bb9e5e7
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/5967
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Mid-Infrared laser spectroscopy detection and quantification of explosives in soils using multivariate analysis and artificial intelligence
title Mid-Infrared laser spectroscopy detection and quantification of explosives in soils using multivariate analysis and artificial intelligence
spellingShingle Mid-Infrared laser spectroscopy detection and quantification of explosives in soils using multivariate analysis and artificial intelligence
Quantum cascade laser
Remote detection
Partial least squares
High explosives
Artificial intelligence
Machine learning
title_short Mid-Infrared laser spectroscopy detection and quantification of explosives in soils using multivariate analysis and artificial intelligence
title_full Mid-Infrared laser spectroscopy detection and quantification of explosives in soils using multivariate analysis and artificial intelligence
title_fullStr Mid-Infrared laser spectroscopy detection and quantification of explosives in soils using multivariate analysis and artificial intelligence
title_full_unstemmed Mid-Infrared laser spectroscopy detection and quantification of explosives in soils using multivariate analysis and artificial intelligence
title_sort Mid-Infrared laser spectroscopy detection and quantification of explosives in soils using multivariate analysis and artificial intelligence
dc.creator.fl_str_mv Pacheco-Londoño, Leonardo C.
Warren, Eric
Galán-Freyle, Nataly J.
Villarreal-González, Reynaldo
Aparicio-Bolaño, Joaquín A.
Ospina-Castro, María L.
Shih, Wei-Chuan
Hernández-Rivera, Samuel P.
dc.contributor.author.none.fl_str_mv Pacheco-Londoño, Leonardo C.
Warren, Eric
Galán-Freyle, Nataly J.
Villarreal-González, Reynaldo
Aparicio-Bolaño, Joaquín A.
Ospina-Castro, María L.
Shih, Wei-Chuan
Hernández-Rivera, Samuel P.
dc.subject.eng.fl_str_mv Quantum cascade laser
Remote detection
Partial least squares
High explosives
Artificial intelligence
Machine learning
topic Quantum cascade laser
Remote detection
Partial least squares
High explosives
Artificial intelligence
Machine learning
description A tunable quantum cascade laser (QCL) spectrometer was used to develop methods for detecting and quantifying high explosives (HE) in soil based on multivariate analysis (MVA) and artificial intelligence (AI). For quantification, mixes of 2,4-dinitrotoluene (DNT) of concentrations from 0% to 20% w/w with soil samples were investigated. Three types of soils, bentonite, synthetic soil, and natural soil, were used. A partial least squares (PLS) regression model was generated for predicting DNT concentrations. To increase the selectivity, the model was trained and evaluated using additional analytes as interferences, including other HEs such as pentaerythritol tetranitrate (PETN), trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), and non-explosives such as benzoic acid and ibuprofen. For the detection experiments, mixes of different explosives with soils were used to implement two AI strategies. In the first strategy, the spectra of the samples were compared with spectra of soils stored in a database to identify the most similar soils based on QCL spectroscopy. Next, a preprocessing based on classical least squares (Pre-CLS) was applied to the spectra of soils selected from the database. The parameter obtained based on the sum of the weights of Pre-CLS was used to generate a simple binary discrimination model for distinguishing between contaminated and uncontaminated soils, achieving an accuracy of 0.877. In the second AI strategy, the same parameter was added to a principal component matrix obtained from spectral data of samples and used to generate multi-classification models based on different machine learning algorithms. A random forest model worked best with 0.996 accuracy and allowing to distinguish between soils contaminated with DNT, TNT, or RDX and uncontaminated soils.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-06-19T23:30:21Z
dc.date.available.none.fl_str_mv 2020-06-19T23:30:21Z
dc.date.issued.none.fl_str_mv 2020
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.issn.none.fl_str_mv https://www.mdpi.com/2076-3417/10/12/4178
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/5967
dc.identifier.doi.none.fl_str_mv 10.3390/app10124178
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/2076-3417/10/12/4178
url https://www.mdpi.com/2076-3417/10/12/4178
https://hdl.handle.net/20.500.12442/5967
identifier_str_mv 10.3390/app10124178
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.eng.fl_str_mv MDPI
dc.publisher.spa.fl_str_mv Facultad de Ingenierías
dc.source.eng.fl_str_mv Revista Applied Sciences
dc.source.none.fl_str_mv Vol. 10, No. 12, (2020)
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/980f30d7-b9b8-4c3e-b3d0-f60962c16163/download
https://bonga.unisimon.edu.co/bitstreams/ee34f612-8ade-41bc-b494-7f3c4284cd25/download
https://bonga.unisimon.edu.co/bitstreams/917bccb1-3f63-4d12-b875-7fe19fdd7a25/download
https://bonga.unisimon.edu.co/bitstreams/20b4c5a7-ad2d-4726-a790-e489a70089c9/download
https://bonga.unisimon.edu.co/bitstreams/d9b6b9df-5338-4d92-8a38-83ff189cdfbc/download
https://bonga.unisimon.edu.co/bitstreams/65569d24-d7f9-4cbf-ad20-7b6444648731/download
https://bonga.unisimon.edu.co/bitstreams/02b300a1-1152-439e-be2f-4bcb7301e1f6/download
https://bonga.unisimon.edu.co/bitstreams/2d86412a-227e-4be9-94e0-c12c76273d1b/download
https://bonga.unisimon.edu.co/bitstreams/6d7768ea-a3c2-4b34-aa86-a7b82657ddb2/download
bitstream.checksum.fl_str_mv 707b56758f4d290f15019a160cf16b42
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
b4d80a344fa1c4b534c893f41241f121
f652ab9e6b810344d46f1624d867caaf
f652ab9e6b810344d46f1624d867caaf
7123a62d78c2caf46ce191f841fbe1f9
49b23cced56efb8183ef46ded82b24c9
49b23cced56efb8183ef46ded82b24c9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076134038437888
spelling Pacheco-Londoño, Leonardo C.6b1ffce2-eacd-4bef-ac33-027cc8b3ddb2Warren, Ericf11adbc4-e1ed-4070-ad74-f2afeb12ccabGalán-Freyle, Nataly J.cd16040f-2e16-4535-a75e-0b661dae889fVillarreal-González, Reynaldo0b64215d-5c8b-4e4d-b796-746ffe6b54feAparicio-Bolaño, Joaquín A.15d79b73-91de-489e-b04f-0a2e2729956dOspina-Castro, María L.59a0228b-703d-410b-8af1-d64112bcb200Shih, Wei-Chuan940bd300-bba6-4f57-a0b2-e9ae0642a21cHernández-Rivera, Samuel P.fab014c2-13e0-4f18-91a9-d7b676a8726e2020-06-19T23:30:21Z2020-06-19T23:30:21Z2020https://www.mdpi.com/2076-3417/10/12/4178https://hdl.handle.net/20.500.12442/596710.3390/app10124178https://www.mdpi.com/2076-3417/10/12/4178A tunable quantum cascade laser (QCL) spectrometer was used to develop methods for detecting and quantifying high explosives (HE) in soil based on multivariate analysis (MVA) and artificial intelligence (AI). For quantification, mixes of 2,4-dinitrotoluene (DNT) of concentrations from 0% to 20% w/w with soil samples were investigated. Three types of soils, bentonite, synthetic soil, and natural soil, were used. A partial least squares (PLS) regression model was generated for predicting DNT concentrations. To increase the selectivity, the model was trained and evaluated using additional analytes as interferences, including other HEs such as pentaerythritol tetranitrate (PETN), trinitrotoluene (TNT), cyclotrimethylenetrinitramine (RDX), and non-explosives such as benzoic acid and ibuprofen. For the detection experiments, mixes of different explosives with soils were used to implement two AI strategies. In the first strategy, the spectra of the samples were compared with spectra of soils stored in a database to identify the most similar soils based on QCL spectroscopy. Next, a preprocessing based on classical least squares (Pre-CLS) was applied to the spectra of soils selected from the database. The parameter obtained based on the sum of the weights of Pre-CLS was used to generate a simple binary discrimination model for distinguishing between contaminated and uncontaminated soils, achieving an accuracy of 0.877. In the second AI strategy, the same parameter was added to a principal component matrix obtained from spectral data of samples and used to generate multi-classification models based on different machine learning algorithms. A random forest model worked best with 0.996 accuracy and allowing to distinguish between soils contaminated with DNT, TNT, or RDX and uncontaminated soils.pdfengMDPIFacultad de IngenieríasAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Revista Applied SciencesVol. 10, No. 12, (2020)Quantum cascade laserRemote detectionPartial least squaresHigh explosivesArtificial intelligenceMachine learningMid-Infrared laser spectroscopy detection and quantification of explosives in soils using multivariate analysis and artificial intelligenceinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Frische, T.; Höper, H. Soil microbial parameters and luminescent bacteria assays as indicators for in situ bioremediation of TNT-contaminated soils. Chemosphere 2003, 50, 415–427.Correa-Torres, S.N.; Pacheco-Londono, L.C.; Espinosa-Fuentes, E.A.; Rodriguez, L.; Souto-Bachiller, F.A.; Hernandez-Rivera, S.P. TNT removal from culture media by three commonly available wild plants growing in the Caribbean. J. Environ. Monit. 2012, 14, 30–33.Hildenbrand, J.; Herbst, J.; Wöllenstein, J.; Lambrecht, A. Explosive detection using infrared laser spectroscopy. Proc. SPIE 2009, 7222, 72220B.Narang, U.; Gauger, P.R.; Ligler, F.S. A Displacement Flow Immunosensor for Explosive Detection Using Microcapillaries. Anal. Chem. 1997, 69, 2779–2785.Hilmi, A.; Luong, J.H.T. Micromachined Electrophoresis Chips with Electrochemical Detectors for Analysis of Explosive Compounds in Soil and Groundwater. Environ. Sci. Technol. 2000, 34, 3046–3050.Kumar, S.; Venkatramaiah, N.; Patil, S. Fluoranthene Based Derivatives for Detection of Trace Explosive Nitroaromatics. J. Phys. Chem. C 2013, 117, 7236–7245.Sheremata, T.W.; Halasz, A.; Paquet, L.; Thiboutot, S.; Ampleman, G.; Hawari, J. The Fate of the Cyclic Nitramine Explosive RDX in Natural Soil. Environ. Sci. Technol. 2001, 35, 1037–1040.Larson, S.L.; Martin, W.A.; Escalon, B.L.; Thompson, M. Dissolution, Sorption, and Kinetics Involved in Systems Containing Explosives, Water, and Soil. Environ. Sci. Technol. 2008, 42, 786–792.Marple, R.L.; LaCourse,W.R. Application of Photoassisted Electrochemical Detection to Explosive-Containing Environmental Samples. Anal. Chem. 2005, 77, 6709–6714.Gallagher, N.B.; Blake, T.A.; Gassman, P.L. Application of extended inverse scatter correction to mid-infrared reflectance spectra of soil. J. Chemom. 2005, 19, 271–281.Forouzangohar, M.; Kookana, R.S.; Forrester, S.T.; Smernik, R.J.; Chittleborough, D.J. Mid-infrared Spectroscopy and Chemometrics to Predict Diuron Sorption Coe cients in Soils. Environ. Sci. Technol. 2008, 42, 3283–3288.Gallagher, N.B.; Gassman, P.L.; Blake, T.A. Strategies for Detecting Organic Liquids on Soils Using Mid-Infrared Reflection Spectroscopy. Environ. Sci. Technol. 2008, 42, 5700–5705.Mukherjee, A.; Von der Porten, S.; Patel, C.K.N. Standoff detection of explosive substances at distances of up to 150 m. Appl. Opt. 2010, 49, 2072–2078.Hernández, M.D.; Santiago, I.; Padilla, I.Y. Macro-sorption of 2,4-dinitrotoluene onto sandy and clay soils. Proc. SPIE 2006, 6217, 621736.Baez, B.; Correa, S.N.; Hernandez-Rivera, S.P.; de Jesus, M.; Castro, M.E.; Mina, N.; Briano, J.G. Transport of explosives I: TNT in soil and its equilibrium vapor. Proc. SPIE 2004, 5415, 1389–1399.Torres, A.; Padilla, I.; Hwang, S. Physical modeling of 2,4-DNT gaseous diffusion through unsaturated soil. Proc. SPIE 2007, 6553, 65531Q.Herrera-Sandoval, G.M.; Ballesteros, L.M.; Mina, N.; Briano, J.; Castro, M.E.; Hernandez-Rivera, S.P. Raman signatures of TNT in contact with sand particles. Proc. SPIE 2005, 5794, 1245–1253.Blanco, A.; Mina, N.; Castro, M.E.; Castillo-Chara, J.; Hernandez-Rivera, S.P. Effect of environmental conditions on the spectroscopic signature of DNT in sand. Proc. SPIE 2005, 5794, 1281–1289.Ballesteros, L.M.; Herrera, G.M.; Castro, M.E.; Briano, J.; Mina, N.; Hernandez-Rivera, S.P. Spectroscopic signatures of PETN in contact with sand particles. Proc. SPIE 2005, 5794, 1254–1262.Hernandez-Rivera, S.P.; Manrique-Bastidas, C.A.; Blanco, A.; Primera, O.M.; Pacheco, L.C.; Castillo-Chara, J.; Castro, M.E.; Mina, N. Spectroscopic characterization of nitroaromatic landmine signature explosives. Proc. SPIE 2004, 5415, 474–485.Osorio, C.; Gomez, L.M.; Hernandez, S.P.; Castro, M.E. Time-of-flight mass spectroscopy measurements of TNT and RDX on soil surfaces. Proc. SPIE 2005, 5794, 803–811.Manrique-Bastidas, C.A.; Mina, N.; Castro, M.E.; Hernandez-Rivera, S.P. Raman microspectroscopy and FTIR crystallization studies of 2,4,6-TNT in soil. Proc. SPIE 2005, 5794, 1358–1365.Blanco, A.; Pacheco-Londoño, L.C.; Peña-Quevedo, A.J.; Hernández-Rivera, S.P. UV Raman detection of 2,4-DNT in contact with sand particles. Proc. SPIE 2006, 6217, 621737.Galán-Freyle, N.J.; Pacheco-Londoño, L.C.; Figueroa-Navedo, A.M.; Hernandez-Rivera, S.P. Standoff Detection of Highly Energetic Materials Using Laser-Induced Thermal Excitation of Infrared Emission. Appl. Spectrosc. 2015, 69, 535–544.Galán-Freyle, N.J.; Ospina-Castro,M.L.;Medina-González, A.R.; Villarreal-González, R.; Hernández-Rivera, S.P.; Pacheco-Londoño, L.C. Artificial Intelligence AssistedMid-Infrared Laser Spectroscopy In Situ Detection of Petroleum in Soils. Appl. Sci. 2020, 10, 1319.Rüther, A.; Pfeifer, M.; Lórenz-Fonfría, V.A.; Lüdeke, S. pH Titration Monitored by Quantum Cascade Laser-Based Vibrational Circular Dichroism. J. Phys. Chem. B 2014, 118, 3941–3949.Lüdeke, S.; Pfeifer, M.; Fischer, P. Quantum-Cascade Laser-Based Vibrational Circular Dichroism. J. Am. Chem. Soc. 2011, 133, 5704–5707.Shi, Q.; Nelson, D.D.; McManus, J.B.; Zahniser, M.S.; Parrish, M.E.; Baren, R.E.; Shafer, K.H.; Harward, C.N. Quantum Cascade Infrared Laser Spectroscopy for Real-Time Cigarette Smoke Analysis. Anal. Chem. 2003, 75, 5180–5190.Wörle, K.; Seichter, F.; Wilk, A.; Armacost, C.; Day, T.; Godejohann, M.; Wachter, U.; Vogt, J.; Radermacher, P.; Mizaikoff, B. Breath Analysis with Broadly Tunable Quantum Cascade Lasers. Anal. Chem. 2013, 85, 2697–2702.Galán-Freyle, N.J.; Pacheco-Londoño, L.C.; Román-Ospino, A.D.; Hernandez-Rivera, S.P. Applications of Quantum Cascade Laser Spectroscopy in the Analysis of Pharmaceutical Formulations. Appl. Spectrosc. 2016, 70, 1511–1519.Padilla-Jiménez, A.C.; Ortiz-Rivera, W.; Rios-Velazquez, C.; Vazquez-Ayala, I.; Hernández-Rivera, S.P. Detection and discrimination of microorganisms on various substrates with quantum cascade laser spectroscopy. OPTICE 2014, 53, 061611.Faist, J.; Capasso, F.; Sivco, D.L.; Sirtori, C.; Hutchinson, A.L.; Cho, A.Y. Quantum Cascade Laser. Science 1994, 264, 553–556.Hvozdara, L.; Pennington, N.; Kraft, M.; Karlowatz, M.; Mizaikoff, B. Quantum cascade lasers for mid-infrared spectroscopy. Vib. Spectrosc. 2002, 30, 53–58.Ruiz-Caballero, J.L.; Blanco-Riveiro, L.A.; Ramirez-Marrero, I.A.; Perez-Almodovar, L.A.; Colon-Mercado, A.M.; Castro-Suarez, J.R.; Pacheco-Londoño, L.C.; Hernandez-Rivera, S.P. Enhanced RDX Detection Studies on Various Types of Substrates via Tunable Quantum Cascade Laser Spectrometer Coupled with Grazing Angle Probe. IOP Conf. Ser. Mater. Sci. Eng. 2019, 519, 012007.Pacheco-Londoño, L.C.; Galán-Freyle, N.J.; Figueroa-Navedo, A.M.; Infante-Castillo, R.; Ruiz-Caballero, J.L.; Hernández-Rivera, S.P. Quantum cascade laser back-reflection spectroscopy at grazing-angle incidence using the fast Fourier transform as a data preprocessing algorithm. J. Chemom. 2019, 33, e3167.Pacheco-Londoño, L.C.; Aparicio-Bolaño, J.A.; Galán-Freyle, N.J.; Román-Ospino, A.D.; Ruiz-Caballero, J.L.; Hernández-Rivera, S.P. Classical Least Squares-Assisted Mid-Infrared (MIR) Laser Spectroscopy Detection of High Explosives on Fabrics. Appl. Spectrosc. 2019, 73, 17–29.Pacheco-Londoño, L.C.; Ruiz-Caballero, J.L.; Ramírez-Cedeño, M.L.; Infante-Castillo, R.; Gálan-Freyle, N.J.; Hernández-Rivera, S.P. Surface Persistence of Trace Level Deposits of Highly Energetic Materials. Molecules 2019, 24, 3494.Pacheco-Londoño, L.C.; Castro-Suarez, J.R.; Galán-Freyle, N.J.; Figueroa-Navedo, A.M.; Ruiz-Caballero, J.L.; Infante-Castillo, R.; Hernández-Rivera, S.P. Mid-Infrared Laser Spectroscopy Applications I: Detection of Traces of High Explosives on Reflective and Matte Substrates. In Infrared Spectroscopy—Principles, Advances, and Applications; IntechOpen: London, UK, 2019.Phillips, M.C.; Bernacki, B.E. Hyperspectral microscopy of explosives particles using an external cavity quantum cascade laser. OPTICE 2012, 52, 061302.Pacheco-Londoño, L.C.; Castro-Suarez, J.R.; Hernández-Rivera, S.P. Detection of Nitroaromatic and Peroxide Explosives in Air Using Infrared Spectroscopy: QCL and FTIR. Adv. Opt. Technol. 2013, 2013, 532670.Sirkeli, V.P.; Yilmazoglu, O.; Preu, S.; Küppers, F.; Hartnagel, H.L. Proposal for a Monolithic Broadband Terahertz Quantum Cascade Laser Array Tailored to Detection of Explosive Materials. Sens. Lett. 2018, 16, 1–7.Pettersson, A.; Wallin, S.; Östmark, H.; Ehlerding, A.; Johansson, I.; Nordberg, M.; Ellis, H.; Al-Khalili, A. Explosives standoff detection using Raman spectroscopy: From bulk towards trace detection. Proc. SPIE 2010, 7664, 76641K.Yang, C.S.C.; Brown, E.E.; Hommerich, U.; Jin, F.; Trivedi, S.B.; Samuels, A.C.; Snyder, A.P. Long-Wave, Infrared Laser-Induced Breakdown (LIBS) Spectroscopy Emissions from Energetic Materials. Appl. Spectrosc. 2012, 66, 1397–1402.Misra, A.K.; Sharma, S.K.; Acosta, T.E.; Porter, J.N.; Bates, D.E. Single-Pulse Standoff Raman Detection of Chemicals from 120 m Distance During Daytime. Appl. Spectrosc. 2012, 66, 1279–1285.Gottfried, J.L.; De Lucia, F.C.;Munson, C.A.;Miziolek, A.W. Standoff Detection of Chemical and Biological Threats Using Laser-Induced Breakdown Spectroscopy. Appl. Spectrosc. 2008, 62, 353–363.Castro-Suarez, J.R.; Pacheco-Londoño, L.C.; Vélez-Reyes, M.; Diem, M.; Tague, T.J.; Hernandez-Rivera, S.P. FT-IR Standoff Detection of Thermally Excited Emissions of Trinitrotoluene (TNT) Deposited on Aluminum Substrates. Appl. Spectrosc. 2013, 67, 181–186.Carter, J.C.; Angel, S.M.; Lawrence-Snyder, M.; Scaffdi, J.; Whipple, R.E.; Reynolds, J.G. Standoff Detection of High Explosive Materials at 50 Meters in Ambient Light Conditions Using a Small Raman Instrument. Appl. Spectrosc. 2005, 59, 769–775.Averett, L.A.; Griffths, P.R. Mid-Infrared Diffuse Reflection of a Strongly Absorbing Analyte on Non-Absorbing and Absorbing Matrices. Part II: Thin Liquid Layers on Powdered Substrates. Appl. Spectrosc. 2008, 62, 383–388.Pacheco-Londoño, L.; Ortiz-Rivera, W.; Primera-Pedrozo, O.; Hernández-Rivera, S. Vibrational spectroscopy standoff detection of explosives. Anal. Bioanal. Chem. 2009, 395, 323–335.Van Neste, C.W.; Senesac, L.R.; Thundat, T. Standoff Spectroscopy of Surface Adsorbed Chemicals. Anal. Chem. 2009, 81, 1952–1956.Moros, J.; Lorenzo, J.A.; Lucena, P.; Miguel Tobaria, L.; Laserna, J.J. Simultaneous Raman Spectroscopy– Laser-Induced Breakdown Spectroscopy for Instant Standoff Analysis of Explosives Using a Mobile Integrated Sensor Platform. Anal. Chem. 2010, 82, 1389–1400.Moros, J.; Laserna, J.J. New Raman–Laser-Induced Breakdown Spectroscopy Identity of Explosives Using Parametric Data Fusion on an Integrated Sensing Platform. Anal. Chem. 2011, 83, 6275–6285.Ortiz-Rivera, W.; Pacheco-Londoño, L.; Castro-Suarez, J.; Felix-Rivera, H.; Hernandez-Rivera, S. Vibrational Spectroscopy Standoff Detection of Threat Chemicals; SPIE: Bellingham, WA, USA, 2011; Volume 8031.Miyazawa, M.; Pavan, M.A.; de Oliveira, E.L.; Ionashiro, M.; Silva, A.K. Gravimetric determination of soil organic matter. Braz. Arch. Biol. Technol. 2000, 43, 475–478.Weiner, E.R. Applications of Environmental Chemistry: A Practical Guide for Environmental Professionals; Lewis Pub.: Boca Raton, FL, USA, 2000.Yanjun, C.; Achari, G.; Langford, C.H. Protocols for the analysis of transformer oil and its degradation in soil by hydrogen peroxide. Can. J. Civ. Eng. 2009, 36, 1547–1557.Lorber, A. Error propagation and figures of merit for quantification by solving matrix equations. Anal. Chem. 1986, 58, 1167–1172.Ferreira, M.H.; Braga, J.W.B.; Sena, M.M. Development and validation of a chemometric method for direct determination of hydrochlorothiazide in pharmaceutical samples by diffuse reflectance near-infrared spectroscopy. Microelectron. J. 2013, 109, 158–164.Olivieri, A.C.; Faber, N.M.; Ferré, J.; Boqué, R.; Kalivas, J.H.; Mark, H. Uncertainty estimation and figures of merit for multivariate calibration (IUPAC Technical Report). Pure Appl. Chem. 2006, 78, 633.Felipe-Sotelo, M.; Cal-Prieto, M.J.; Ferre, J.; Boque, R.; Andrade, J.M.; Carlosena, A. Linear PLS regression to cope with interferences of major concomitants in the determination of antimony by ETAAS. J. Anal. Spectrom. 2006, 21, 61–68.Galan-Freyle, N.J.; Figueroa-Navedo, A.M.; Pacheco-Londoño, Y.C.; Ortiz-Rivera,W.; Pacheco-Londoño, L.C.; Hernández-Rivera, S.P. Chemometrics-enhanced fiber-optic Raman detection, discrimination and quantification of chemical agents simulants concealed in commercial bottles. Anal. Chem. Res. 2014, 2, 15–22.Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.; et al. API design for machine learning software: Experiences from the scikit-learn project. In Proceedings of the European Conference on Machine Learning and Principles and Practices of Knowledge Discovery in Databases, Prague, Czech Republic, 23 September 2013.Kubelka, P. New Contributions to the Optics of Intensely Light-Scattering Materials. Part I. J. Opt. Soc. Am 1948, 38, 448.Bull, C.R. Compensation for particle size effects in near-infrared reflectance. Analyst 1991, 116, 781–786.Sirita, J.; Phanichphant, S.; Meunier, F.C. Quantitative Analysis of Adsorbate Concentrations by Diffuse Reflectance FT-IR. Anal. Chem. 2007, 79, 3912–3918.Igne, B.; Hurburgh, C.R. Local chemometrics for samples and variables: Optimizing calibration and standardization processes. J. Chemom. 2010, 24, 75–86.Sede BarranquillaMaestría en Gestión y Emprendimiento TecnológicoORIGINALPDF.pdfPDF.pdfapplication/pdf2066776https://bonga.unisimon.edu.co/bitstreams/980f30d7-b9b8-4c3e-b3d0-f60962c16163/download707b56758f4d290f15019a160cf16b42MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/ee34f612-8ade-41bc-b494-7f3c4284cd25/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/917bccb1-3f63-4d12-b875-7fe19fdd7a25/download733bec43a0bf5ade4d97db708e29b185MD53TEXTMid-Infrared_Laser_Spectroscopy_Detection.pdf.txtMid-Infrared_Laser_Spectroscopy_Detection.pdf.txtExtracted texttext/plain77475https://bonga.unisimon.edu.co/bitstreams/20b4c5a7-ad2d-4726-a790-e489a70089c9/downloadb4d80a344fa1c4b534c893f41241f121MD54PDF.txtPDF.txtExtracted texttext/plain82752https://bonga.unisimon.edu.co/bitstreams/d9b6b9df-5338-4d92-8a38-83ff189cdfbc/downloadf652ab9e6b810344d46f1624d867caafMD56PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain82752https://bonga.unisimon.edu.co/bitstreams/65569d24-d7f9-4cbf-ad20-7b6444648731/downloadf652ab9e6b810344d46f1624d867caafMD58THUMBNAILMid-Infrared_Laser_Spectroscopy_Detection.pdf.jpgMid-Infrared_Laser_Spectroscopy_Detection.pdf.jpgGenerated Thumbnailimage/jpeg1593https://bonga.unisimon.edu.co/bitstreams/02b300a1-1152-439e-be2f-4bcb7301e1f6/download7123a62d78c2caf46ce191f841fbe1f9MD55PDF.jpgPDF.jpgGenerated Thumbnailimage/jpeg5549https://bonga.unisimon.edu.co/bitstreams/2d86412a-227e-4be9-94e0-c12c76273d1b/download49b23cced56efb8183ef46ded82b24c9MD57PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5549https://bonga.unisimon.edu.co/bitstreams/6d7768ea-a3c2-4b34-aa86-a7b82657ddb2/download49b23cced56efb8183ef46ded82b24c9MD5920.500.12442/5967oai:bonga.unisimon.edu.co:20.500.12442/59672024-08-14 21:53:19.44http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalrestrictedhttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u