Differential galois groups and representation of quivers for seismic models with constant hessian of square of slowness

The trajectory of energy is modeled by the solution of the Eikonal equation, which can be solved by solving a Hamiltonian system. This system is amenable of treatment from the point of view of the theory of differential algebra. In particular, by Morales-Ramis theory, it is possible to analyze integ...

Full description

Autores:
Acosta-Humánez, Primitivo
Giraldo, Hernán
Piedrahita, Carlos
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/1896
Acceso en línea:
http://hdl.handle.net/20.500.12442/1896
Palabra clave:
Differential Galois theory
Eikonal equation
Hamilton equation
Helmholtz equation
High frequency approximation
Morales-Ramis theory
Ray theory
Representations of quivers
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_94831d452a55dd1fa110b2ca54630493
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/1896
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Differential galois groups and representation of quivers for seismic models with constant hessian of square of slowness
title Differential galois groups and representation of quivers for seismic models with constant hessian of square of slowness
spellingShingle Differential galois groups and representation of quivers for seismic models with constant hessian of square of slowness
Differential Galois theory
Eikonal equation
Hamilton equation
Helmholtz equation
High frequency approximation
Morales-Ramis theory
Ray theory
Representations of quivers
title_short Differential galois groups and representation of quivers for seismic models with constant hessian of square of slowness
title_full Differential galois groups and representation of quivers for seismic models with constant hessian of square of slowness
title_fullStr Differential galois groups and representation of quivers for seismic models with constant hessian of square of slowness
title_full_unstemmed Differential galois groups and representation of quivers for seismic models with constant hessian of square of slowness
title_sort Differential galois groups and representation of quivers for seismic models with constant hessian of square of slowness
dc.creator.fl_str_mv Acosta-Humánez, Primitivo
Giraldo, Hernán
Piedrahita, Carlos
dc.contributor.author.none.fl_str_mv Acosta-Humánez, Primitivo
Giraldo, Hernán
Piedrahita, Carlos
dc.subject.eng.fl_str_mv Differential Galois theory
Eikonal equation
Hamilton equation
Helmholtz equation
High frequency approximation
Morales-Ramis theory
Ray theory
Representations of quivers
topic Differential Galois theory
Eikonal equation
Hamilton equation
Helmholtz equation
High frequency approximation
Morales-Ramis theory
Ray theory
Representations of quivers
description The trajectory of energy is modeled by the solution of the Eikonal equation, which can be solved by solving a Hamiltonian system. This system is amenable of treatment from the point of view of the theory of differential algebra. In particular, by Morales-Ramis theory, it is possible to analyze integrable Hamiltonian systems through the abelian structure of their variational equations. In this paper, we obtain the abelian differential Galois groups and the representation of the quiver, that allow us to obtain such abelian differential Galois groups, for some seismic models with constant Hessian of square of slowness, proposed in [20], which are equivalent to linear Hamiltonian systems with three uncoupled harmonic oscillators.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2018-03-21T22:41:49Z
dc.date.available.none.fl_str_mv 2018-03-21T22:41:49Z
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 09720871
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/1896
identifier_str_mv 09720871
url http://hdl.handle.net/20.500.12442/1896
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.license.spa.fl_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_16ec
dc.publisher.eng.fl_str_mv Pushpa Publishing House
dc.source.eng.fl_str_mv Far East Journal of Mathematical Sciences (FJMS)
Vol. 102, No. 3 (2017)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv http://www.pphmj.com/index.php?act=show_login&msg=Please%20first%20login!
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/c1f4c2b0-3542-463d-8be7-160b9d663a70/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv DSpace UniSimon
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1812100473059016704
spelling Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_16ecAcosta-Humánez, Primitivo943741ee-b9b5-4867-b148-541f0701eaea-1Giraldo, Hernán4888c746-3086-4f87-8e90-5a7a6b26b3f5-1Piedrahita, Carlosa49ee4c6-8efe-4c38-b98f-fa414a648151-12018-03-21T22:41:49Z2018-03-21T22:41:49Z201709720871http://hdl.handle.net/20.500.12442/1896The trajectory of energy is modeled by the solution of the Eikonal equation, which can be solved by solving a Hamiltonian system. This system is amenable of treatment from the point of view of the theory of differential algebra. In particular, by Morales-Ramis theory, it is possible to analyze integrable Hamiltonian systems through the abelian structure of their variational equations. In this paper, we obtain the abelian differential Galois groups and the representation of the quiver, that allow us to obtain such abelian differential Galois groups, for some seismic models with constant Hessian of square of slowness, proposed in [20], which are equivalent to linear Hamiltonian systems with three uncoupled harmonic oscillators.engPushpa Publishing HouseFar East Journal of Mathematical Sciences (FJMS)Vol. 102, No. 3 (2017)http://www.pphmj.com/index.php?act=show_login&msg=Please%20first%20login!Differential Galois theoryEikonal equationHamilton equationHelmholtz equationHigh frequency approximationMorales-Ramis theoryRay theoryRepresentations of quiversDifferential galois groups and representation of quivers for seismic models with constant hessian of square of slownessarticlehttp://purl.org/coar/resource_type/c_6501P. Acosta-Humánez, M. Álvarez-Ramírez, D. Blázquez-Sanz and J. Delgado, Non-integrability criterium for normal variational equations around an integrable subsystem and an example: the Wilberforce spring-pendulum, Discrete and Continuous Dynamical Systems - Series A (DCDS-A) 33(1) (2013), 965-986.P. Acosta-Humánez, M. Álvarez-Ramírez and J. Delgado, Non-integrability of some few body problems in two degrees of freedom, Qual. Theory Dyn. Syst. 8(2) (2009), 209-239.P. Acosta-Humánez and D. Blázquez-Sanz, Hamiltonian systems and variational equations with polynomial coefficients, Dynam. Systems Appl. 5(1) (2008), 6-10.P. Acosta-Humánez and D. Blázquez-Sanz, Non-integrability of some hamiltonians with rational potentials, Discrete Contin. Dyn. Syst. Series B 10(2&3) (2008), 265-293.P. Acosta-Humánez, D. Blázquez-Sanz and C. Vargas-Contreras, On hamiltonian potentials with quartic polynomial normal variational equations, Nonlinear Studies. The International Journal 16 (2009), 299-313.P. Acosta-Humánez, J. J. Morales-Ruiz and J.-A. Weil, Galoisian approach to integrability of Schrödinger equation, Rep. Math. Phys. 67(3) (2011), 305-374.P. Acosta-Humánez and Ch. Pantazi, Darboux integrals for Schrödinger planar vector fields via Darboux transformations, Symmetry, Integrability and Geometry: Methods and Applications (SIGMA) 8(043) (2012), 1-26.P. Acosta- Humánez and E. Suazo, Liouvillian propagators, Riccati equation and differential Galois theory, J. Phys. A: Math. Theor. 46(45) (2013), 455203, 17 pp.P. Acosta-Humánez and E. Suazo, Liouvillian propagators and degenerate parametric amplification with time-dependent pump amplitude and phase, Analysis, Modelling, Optimization, and Numerical Techniques, Springer Proceedings in Mathematics & Statistics 121(1) (2015), 295-307.P. B. Acosta-Humánez, Galoisian approach to supersymmetric quantum mechanics. Ph.D. Thesis, Universitat Politècnica de Catalunya. Available in ArXiv: 0906.3532, 2009.P. B. Acosta-Humánez. Nonautonomous Hamiltonian systems and Morales-Ramis theory I. The case x = f (x, t), SIAM J. Appl. Dyn. Syst. 8(1) (2009), 279-297.P. B. Acosta-Humánez, Galoisian Approach to Supersymmetric Quantum Mechanics. The Integrability Analysis of the Schrödinger Equation by Means of Differential Galois Theory, VDM Verlag, Dr Muller, Berlin, 2010.P. B. Acosta-Humánez, S. I. Kryuchkov, E. Suazo and S. K. Suslov, Degenerate parametric amplification of squeezed photons: explicit solutions, statistics, means and variances, J. Nonlinear Optic. Phys. Mat. 24(2) (2015), 1550021, 27 pp.P. B. Acosta-Humánez, J. T. Lázaro, J. Morales-Ruiz and Ch. Pantazi, On the integrability of polynomial vector fields in the plane by means of Picard-Vessiot theory, Discrete and Continuous Dynamical Systems - Series A (DCDS-A) 35(5) (2015), 1767-1800.V. Arnold, Mathematical methods of classical mechanics, Graduate Texts in Mathematics, Vol. 60, 2nd ed., Springer Verlag, New York, USA, 1989.I. Assem, D. D. Simson and A. Skowroński, Elements of the representation theory of associative algebras, London Mathematical Society Student Texts, Cambridge University Press, Cambridge, 2006.M. Auslander, I. Reiten and S. Smalø, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics, Vol. 36, Cambridge University Press, 1995.N. Bleistein, Mathematical Methods for Wave Phenomena, Academic Press, 1986.N. Bleistein and R. Handelsman, Asymptotic Expansion of Integrals, 2nd ed., Dover, New York, USA, 1984.V. Cerveny, Seismic Ray Theory, Cambridge University Press, Cambridge, UK, 2001.J. de la Peña, Tame Algebras and Derived Categories, 1st ed., XV Escola de Álgebra. UFRGS, Brasil, Canela-RS, 1998.L. Evans, Partial differential equations, Graduate Studies in Mathematics, Vol. 19, 2nd ed., American Mathematical Society, Providence, Rhode Island, USA, 2010.J. Fritz, Partial differential equations, Applied Mathematical Sciences, Vol. 1, 4th ed., Springer Verlag, New York, USA, 1982.P. Gabriel, Unzerlegbare dartellungen I, Manuscripta Math. 6 (1972), 71-103.P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, Proc. ICRA II (Ottawa, Canada 1979), Lecture Notes in Math. 831, Springer-Verlag, 1980, pp. 1-71.W. H. Gustafson, The history of algebras and their representations, Proc. ICRA III (Puebla, Mexico 1980), Lecture Notes in Math. 944, Springer-Verlag, 1982, pp. 1-28.M. Herzberger, Modern Geometrical Optics, John Wiley and Sons (Interscience), New York, 1958.I. Kaplansky, An Introduction to Differential Algebra, Hermann, 1957.T. Kimura, On Riemann’s equations which are solvable by quadratures, Funkcialaj Ekvacioj 12(1) (1969), 269-281.J. Kovacic, An algorithm for solving second order linear homogeneous differential equations, J. Symbolic Computation 2(1) (1986), 3-43.A. Magid, Lectures on differential Galois theory, University Lecture Series, American Mathematical Society, Providence, RI, 1994.J. Martinet and J. P. Ramis, Theorie de Galois differentielle et resommation, Computer Algebra and Differential Equations 193(1) (1989), 117-214.J. Morales-Ruiz, Differential Galois Theory and Non-integrability of Hamiltonian Systems, Progress in Mathematics, Birkhäuser, Basel, 1999.J. J. Morales-Ruiz and J.-P. Ramis, Galoisian obstructions to integrability of hamiltonian systems I, Methods Appl. Anal. 8(1) (2001), 33-96.J. J. Morales-Ruiz and J.-P. Ramis, Galoisian obstructions to integrability of hamiltonian systems II, Methods Appl. Anal. 8(1) (2001), 97-112.J. J. Morales-Ruiz and J.-P. Ramis, Integrability of dynamical systems through differential Galois theory: a practical guide, Differential algebra, complex analysis and orthogonal polynomials, Contemp. Math., Amer. Math. Soc. 509(1) (2010), 143-220.J. Rauch, Hyperbolic partial differential in geometrical optics, Graduate Studies in Mathematics, Vol. 133, 1st ed., American Mathematical Society, Providence, Rhode Island, USA, 2012.I. Reiten, An introduction to the representation of Artin algebras, Bull London Math. Soc. 17 (1985), 209-223.C. M. Ringel, Tame algebras and integral quadratic forms, Lecture Notes in Mathematics, Vol. 1099, Springer-Verlag, 1984.J. Schleicher, M. Tygel and P. Hubral, Seismic true-amplitude imaging, SEG Geophysical Developments, Vol. 12, 1st ed., Society of Exploration Geophysics, Tulsa, OK, USA, 2007.M. F. Singer, An outline of differential Galois theory, Computer Algebra and Differential Equations 121(1) (1989), 3-58.M. van der Put and M. Singer, Galois theory in linear differential equations, Graduate Text in Mathematics, Springer Verlag, New York, 2003.M. Zworski, Semiclassical analysis, Graduate Studies in Mathematics, Vol. 138, 1st ed., American Mathematical Society, Providence, Rhode Island, USA, 2012.LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bonga.unisimon.edu.co/bitstreams/c1f4c2b0-3542-463d-8be7-160b9d663a70/download8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12442/1896oai:bonga.unisimon.edu.co:20.500.12442/18962019-04-11 21:51:32.652metadata.onlyhttps://bonga.unisimon.edu.coDSpace UniSimonbibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=