Importance of high triglycerides levels between novel coronary risk factors

Introduction: The analysis of new cardiovascular risk factors is under an extensive debate in the cardiology and metabolic research fields. Objective: To determine the main factors that contribute to the classification of individuals with higher coronary risk in the adult population from Maracaibo,...

Full description

Autores:
Bermúdez, Valmore
Salazar, Juan
Calvo, María
Martínez, María
Añez, Roberto
Rivas-Ríos, José
Chacín, Maricarmen
Hernández, Juan
Graterol, Modesto
Rojas, Joselyn
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/1861
Acceso en línea:
http://hdl.handle.net/20.500.12442/1861
Palabra clave:
Lipids
Insulin
Risk factors
Prevention
Lípidos
Insulina
Factores de riesgo
Prevención
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_935cb2c6df40d471bb690c582e99592e
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/1861
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Importance of high triglycerides levels between novel coronary risk factors
dc.title.alternative.spa.fl_str_mv Importancia de niveles elevados de triglicéridos entre los factores de riesgo coronario nuevos
title Importance of high triglycerides levels between novel coronary risk factors
spellingShingle Importance of high triglycerides levels between novel coronary risk factors
Lipids
Insulin
Risk factors
Prevention
Lípidos
Insulina
Factores de riesgo
Prevención
title_short Importance of high triglycerides levels between novel coronary risk factors
title_full Importance of high triglycerides levels between novel coronary risk factors
title_fullStr Importance of high triglycerides levels between novel coronary risk factors
title_full_unstemmed Importance of high triglycerides levels between novel coronary risk factors
title_sort Importance of high triglycerides levels between novel coronary risk factors
dc.creator.fl_str_mv Bermúdez, Valmore
Salazar, Juan
Calvo, María
Martínez, María
Añez, Roberto
Rivas-Ríos, José
Chacín, Maricarmen
Hernández, Juan
Graterol, Modesto
Rojas, Joselyn
dc.contributor.author.none.fl_str_mv Bermúdez, Valmore
Salazar, Juan
Calvo, María
Martínez, María
Añez, Roberto
Rivas-Ríos, José
Chacín, Maricarmen
Hernández, Juan
Graterol, Modesto
Rojas, Joselyn
dc.subject.eng.fl_str_mv Lipids
Insulin
Risk factors
Prevention
topic Lipids
Insulin
Risk factors
Prevention
Lípidos
Insulina
Factores de riesgo
Prevención
dc.subject.spa.fl_str_mv Lípidos
Insulina
Factores de riesgo
Prevención
description Introduction: The analysis of new cardiovascular risk factors is under an extensive debate in the cardiology and metabolic research fields. Objective: To determine the main factors that contribute to the classification of individuals with higher coronary risk in the adult population from Maracaibo, Venezuela. Methods: A descriptive, cross-sectional study with multistage random sampling in 1379 individuals belonging to the Maracaibo City Metabolic Syndrome Prevalence Study (MMSPS) was performed. They were classified according to the coronary risk by Framingham-Wilson equation adapted to our population. The association between various risk factors was evaluated by ordinal logistic regression models. Results: 1,379 subjects (females 55.9%; n = 771) were evaluated, 66.2% (n = 913) were classified with low coronary risk. In univariate ( 2 = 112.35; p < 0.00001) and multivariate analysis [OR: 3.98 (2.39-6.63); p < 0.01], the main factors associated to be classified as the highest risk category were hypertriglyceridemia. Conclusion: There are several factors that should be included in predictive models use worldwide. The most important in our population were dyslipidemia such as hypertriglyceridemia, hyperlipoproteinemia (a) and insulin resistance.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-11
dc.date.accessioned.none.fl_str_mv 2018-03-13T15:33:45Z
dc.date.available.none.fl_str_mv 2018-03-13T15:33:45Z
dc.type.spa.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 23573260
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/1861
identifier_str_mv 23573260
url http://hdl.handle.net/20.500.12442/1861
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.spa.fl_str_mv Sociedad Colombiana de Cardiología y Cirugía Cardiovascular.
dc.source.spa.fl_str_mv Revista Colombiana de Cardiología
Vol. 24, No.6 (2017)
institution Universidad Simón Bolívar
dc.source.uri.none.fl_str_mv http://www.elsevier.es/es-revista-revista-colombiana-cardiologia-203-articulo-importance-high-triglycerides-levels-between-S0120563317300396
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/5e84f87b-2a74-46b5-aef0-3c9c868149c8/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv DSpace UniSimon
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814076099005513728
spelling Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Bermúdez, Valmore29f9aa18-16a4-4fd3-8ce5-ed94a0b8663a-1Salazar, Juanfbd053e7-5aea-424c-812f-92153ecb9181-1Calvo, María3038ee2e-e515-49a5-ac75-96a0d81ff3c8-1Martínez, María9aa9b2df-abae-4b77-9dc6-375422bdff38-1Añez, Roberto0a8ecfdc-a89a-4435-9859-b66bba8947fa-1Rivas-Ríos, José150fd0a6-0769-46ee-8541-c44afb598193-1Chacín, Maricarmen5c3b3d7c-4444-47e2-b2be-11f08df10409-1Hernández, Juan1e343f6e-5122-40d2-b89a-7287a485337c-1Graterol, Modesto59713475-4607-4bff-90c1-a66ad9f0a173-1Rojas, Joselyn2aa91570-0516-424d-8f76-25cd7b39be6e-12018-03-13T15:33:45Z2018-03-13T15:33:45Z2017-1123573260http://hdl.handle.net/20.500.12442/1861Introduction: The analysis of new cardiovascular risk factors is under an extensive debate in the cardiology and metabolic research fields. Objective: To determine the main factors that contribute to the classification of individuals with higher coronary risk in the adult population from Maracaibo, Venezuela. Methods: A descriptive, cross-sectional study with multistage random sampling in 1379 individuals belonging to the Maracaibo City Metabolic Syndrome Prevalence Study (MMSPS) was performed. They were classified according to the coronary risk by Framingham-Wilson equation adapted to our population. The association between various risk factors was evaluated by ordinal logistic regression models. Results: 1,379 subjects (females 55.9%; n = 771) were evaluated, 66.2% (n = 913) were classified with low coronary risk. In univariate ( 2 = 112.35; p < 0.00001) and multivariate analysis [OR: 3.98 (2.39-6.63); p < 0.01], the main factors associated to be classified as the highest risk category were hypertriglyceridemia. Conclusion: There are several factors that should be included in predictive models use worldwide. The most important in our population were dyslipidemia such as hypertriglyceridemia, hyperlipoproteinemia (a) and insulin resistance.Introducción: El análisis de nuevos factores de riesgo cardiovascular constituye un tema de amplio debate en la investigación cardio-metabólica. Objetivo: Determinar los principales factores que contribuyen a la clasificación de sujetos en las categorías de mayor riesgo coronario en individuos adultos de la ciudad de Maracaibo, Venezuela. Métodos: Estudio descriptivo, trasversal con muestreo aleatorio multietapas en 1.379 individuos pertenecientes al Estudio de Prevalencia de Síndrome Metabólico de la Ciudad de Maracaibo (EPSMM). Estos fueron clasificaron de acuerdo con el riesgo coronario mediante la fórmula Framingham-Wilson adaptada para nuestra población. Se evaluó la asociación entre diversos factores de riesgo mediante un modelo de regresión logística ordinal. Resultados: Se evaluaron 1.379 sujetos (mujeres: 55,9%; n = 771), de los cuales un 66,2% (n = 913) fueron clasificados en riesgo coronario bajo. Tanto en el contexto univariante ( 2 = 112,35; p < 0,00001) como multivariante [OR: 3,98 (2,39-6,63); p < 0,01] el principal factor asociado para ser clasificado en las categorías de riesgo más elevado fue la hipertrigliceridemia. Conclusión: Existen numerosos factores que deberían ser incluidos en los modelos de predicción empleados en el mundo, en cuyo caso las dislipidemias: hipertrigliceridemia, hiperlipoproteinemia (a), e insulinorresistencia son las más importantes en nuestra población.engSociedad Colombiana de Cardiología y Cirugía Cardiovascular.Revista Colombiana de CardiologíaVol. 24, No.6 (2017)http://www.elsevier.es/es-revista-revista-colombiana-cardiologia-203-articulo-importance-high-triglycerides-levels-between-S0120563317300396LipidsInsulinRisk factorsPreventionLípidosInsulinaFactores de riesgoPrevenciónImportance of high triglycerides levels between novel coronary risk factorsImportancia de niveles elevados de triglicéridos entre los factores de riesgo coronario nuevosarticlehttp://purl.org/coar/resource_type/c_6501Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation. 2015;131:e29---322.Cooney MT, Dudina A, D’Agostino R, Graham IM. Cardiovascular risk-estimation systems in primary prevention: do they differ? Do they make a difference? Can we see the future. Circulation. 2010;122:300---10.Wang TJ. New cardiovascular risk factors exist, but are they clinically useful. Eur Heart J. 2008;29:441---4.van Vliet-Ostaptchouk JV, Nuotio ML, Slagter SN, Doiron D, Fischer K, Foco L, et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocr Disord. 2014;14:9.Bermudez V, Salazar J, Bello L, Rojas J, A˜nez R, Roque W, et al. Coronary Risk Estimation According to a Recalibrated Framingham-Wilson Score in the Maracaibo City Metabolic Syndrome Prevalence Study. J Cardiology. Photon. 2014;107:160---70.Bermúdez V, Rojas E, Salazar JJ, Bello L, Chávez M, A˜nez R, et al. Coronary risk estimation according to the Framingham-Wilson score: epidemiologic behavior of innovative cardio metabolic risk factors in the Maracaibo City. Int J Cardiovasc Res. 2013;2:4.Bermudez V, Paris-Marcano R, Cano C, Arráiz N, Amell A, Cabrera M, et al. The Maracaibo City Metabolic Syndrome Prevalence Study: Design and Scope. Am J Therapeutics. 2010;17: 288---94.Marrugat J, D’Agostino R, Sullivan L, Elosua R, Wilson P, Ordovas J, et al. An adaptation of the Framingham coronary heart disease risk function to European Mediterranean areas. J Epidemiol Community Health. 2003;57:634---8.Liu J, Hong Y, D’Agostino RB Sr, Wu Z, Wang W, Sun J, et al. Predictive value for the Chinese population of the Framingham CHD risk assessment tool compared with the Chinese Multi-Provincial Cohort Study. JAMA. 2004;291:2591---9.Icaza G, Nú˜nez L, Marrugat J, Mujica V, Escobar MC, Jiménez AL, et al. Estimation of coronary heart disease risk in Chilean subjects based on adapted Framingham equations. Rev Med Chil. 2009;137:1273---82.Bermudez V, Torres Y, Apruzzese V, Martínez MS, Chávez M, Morillo J, et al. Alcohol drinking patterns in the adult population from the Maracaibo municipality, Zulia---Venezuela. Revista Latinoamericana de Hipertensión. 2014;9:21---8.Bermudez VJ, Rojas JJ, Córdova EB, A˜nez R, Toledo A, Aguirre MA, et al. International Physical Activity Questionnaire Overestimation is Ameliorated by Individual Analysis of the Scores. Am J Ther. 2013;20:448---58.National Committee on Detection, Evaluation, and Treatment of High Blood Pressure The fifth report of the Joint National Committee on Detection. Evaluation, and Treatment of High Blood Pressure (JNC V). Arch Intern Med. 1993;153:154---83.NHANES III reference manuals and reports. Hyattsville, MD: Centers for Disease Control and Prevention, 1996. Retrieved from: http://www.cdc.gov/nchs/data/nhanes/nhanes3/cdrom/ nchs/manuals/anthro.pdf.[9/18/2016].Friedewald WT, Levy RI. Fredrickson DS Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499---502.Levy JC, Matthews DR. Hermans MP Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care. 1998;21:2191---2.World Health Organization (2003) The World Health Report 2003. Retrieved from: http://www.who.int/topics/ obesity/en/. [9/18/2016].Bermudez V, Rojas J, Salazar J, A˜nez R, Chávez-Castillo M, González R, et al. Optimal waist circumference cut-off point for multiple risk factor aggregation: results from the Maracaibo City Metabolic Syndrome Prevalence Study. Epidemiology Research International. 2014;2014:718571.Chamberlain JJ, Rhinehart AS, Shaefer CF, Neuman A. Diagnosis and management of diabetes: Synopsis of the 2016 American Diabetes Association Standards of Medical Care in Diabetes. Ann Intern Med. 2016;164:542---52.Alberti K, Eckel R, Grundy S, Zimmet PZ, Cleeman JI, Donato KA, et al. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention: National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Circulation. 2009;120:1640---5.Leino A, Impivaara O, Kaitsaari M, Järvisalo J. Serum concentrations of apolipoprotein A-I, apolipoprotein B, and lipoprotein(a) in a population sample. Clin Chem. 1995;41:1633---6.Bermudez V, Rojas J, Martínez MS, Apruzzese V, Chávez-Castillo M, González R, et al. Epidemiologic behavior and estimation of an optimal cut-off point for homeostasis model assessment-2 insulin resistance: a report from a venezuelan population. Int Sch Res Notices. 2014;2014:616271.Bermúdez V, Cabrera M, Mendoza L, Chávez M, Martínez MS, Rojas J, et al. Epidemiological behavior of high---sensitivity C-Reactive Protein (hs-CRP) in adult individuals in the Maracaibo city, Venezuela. Revista Latinoamericana de Hipertensión. 2013;8:16---24.Ruwanpathirana T, Owen A, Reid CM. Review on cardiovascular risk prediction. Cardiovasc Ther. 2015;33:62---70.Lloyd-Jones DM. Cardiovascular risk prediction: basic concepts, current status, and future directions. Circulation. 2010;121:1768---77.Cortes-Bergoderi M, Thomas RJ, Albuquerque FN, Batsis JA, Burdiat G, Perez-Terzic C, et al. Validity of cardiovascular risk prediction models in Latin America and among Hispanics in the United States of America: a systematic review. Rev Panam Salud Publica. 2012;32:131---9.Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J. 2003;24:987---1003.Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds risk score. JAMA. 2007;297:611---9.Schnell O, Cappuccio F, Genovese S, Standl E, Valensi P, Ceriello A. Type 1 diabetes and cardiovascular disease. Cardiovasc Diabetol. 2013;12:156.de Ferranti SD, de Boer IH, Fonseca V, Fox CS, Golden SH, Lavie CJ, et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Circulation. 2014;130:1110---30.Dhananjayan R, Malati T, Brindha G, Kutala VK. Association of family history of type 2 diabetes mellitus with markers of endothelial dysfunction in South Indian population. Indian J Biochem Biophys. 2013;50:93---8.Du SM, Ma GS, Li YP, Fang HY, Hu XQ, Yang XG, et al. Relationship of body mass index, waist circumference and cardiovascular risk factors in Chinese adult. Biomed Environ Sci. 2010;23:92---101.Mittendorfer B, Peterson LR. Cardiovascular consequences of obesity and targets for treatment. Drug Discov Today Ther Strateg. 2008;5:53---61.Van Gaal LF, Mertens IL, De Block CE. Mechanisms linking obesity with cardiovascular disease. Nature. 2006;444:875---80.Mathieu P, Lemieux I, Després JP. Obesity, inflammation, and cardiovascular risk. Clin Pharmacol Ther. 2010;87:407---16.Gast KB, Tjeerdema N, Stijnen T, Smit JW, Dekkers OM. Insulin resistance and risk of incident cardiovascular events in adults without diabetes: meta-analysis. PLoS One. 2012;7:e52036.Reaven G. Insulin resistance and coronary heart disease in nondiabetic individuals. Arterioscler Thromb Vasc Biol. 2012;32:1754---9.Assmann G, Schulte H, Funke H, von Eckardstein A. The emergence of triglycerides as a significant independent risk factor in coronary artery disease. Eur Heart J. 1998;19 Suppl M:M8---14.Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626---35.Kim EH, Lee JB, Kim SH, Jo MW, Hwang JY, Bae SJ, et al. Serum triglyceride levels and cardiovascular disease events in koreans. Cardiology. 2015;131:228---35.Schwartz GG, Abt M, Bao W, DeMicco D, Kallend D, Miller M, et al. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol. 2015;65:2267---75.Méndez-Castellano H, De Méndez MC. Estratificación social y biología humana: método de Graffar modificado. Arch Ven Pueric Pediatr. 1986;49:93---104.Malaguarnera M, Vacante M, Russo C, Malaguarnera G, Antic T, Malaguarnera L, et al. Lipoprotein(a) in cardiovascular diseases. Biomed Res Int. 2013;2013:650989.LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bonga.unisimon.edu.co/bitstreams/5e84f87b-2a74-46b5-aef0-3c9c868149c8/download8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12442/1861oai:bonga.unisimon.edu.co:20.500.12442/18612019-04-11 21:51:42.736metadata.onlyhttps://bonga.unisimon.edu.coDSpace UniSimonbibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=