Usefulness of digital images segmentation in pulmonary transplantation
In the presence of pulmonary pathologies such as chronic obstructive pulmonary disease, diffuse pulmonary disease and cystic fibrosis, among others, it is common to require the removal or replacement of a portion of lungs. There are several requirements for both donors and organ receivers (recipient...
- Autores:
-
Gelvez-Almeida, E
Huérfano, Y
Vera, M
Vera, M I
Valbuena, O
Salazar-Torres, J
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/5111
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/5111
- Palabra clave:
- Rights
- License
- http://creativecommons.org/licenses/by-nc-nd/4.0/
id |
USIMONBOL2_8e477d5750c4ff566d80c0ef16715721 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/5111 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Usefulness of digital images segmentation in pulmonary transplantation |
title |
Usefulness of digital images segmentation in pulmonary transplantation |
spellingShingle |
Usefulness of digital images segmentation in pulmonary transplantation |
title_short |
Usefulness of digital images segmentation in pulmonary transplantation |
title_full |
Usefulness of digital images segmentation in pulmonary transplantation |
title_fullStr |
Usefulness of digital images segmentation in pulmonary transplantation |
title_full_unstemmed |
Usefulness of digital images segmentation in pulmonary transplantation |
title_sort |
Usefulness of digital images segmentation in pulmonary transplantation |
dc.creator.fl_str_mv |
Gelvez-Almeida, E Huérfano, Y Vera, M Vera, M I Valbuena, O Salazar-Torres, J |
dc.contributor.author.none.fl_str_mv |
Gelvez-Almeida, E Huérfano, Y Vera, M Vera, M I Valbuena, O Salazar-Torres, J |
description |
In the presence of pulmonary pathologies such as chronic obstructive pulmonary disease, diffuse pulmonary disease and cystic fibrosis, among others, it is common to require the removal or replacement of a portion of lungs. There are several requirements for both donors and organ receivers (recipients) established in the literature. May be the main one is the volume that the donor's lungs occupy in the thoracic cavity. This parameter is vital because if the volume of the lungs exceeds the thoracic cavity of the recipients the transplant, logically, is unfeasible for physical reasons such as the incompatibility between the receiver lung volume and the donor lung volume. In this sense, the present paper proposes the creation of a hybrid technique, based on digital image processing techniques application to raise the quality of the information related to lungs captured in three-dimensional sequences of computed tomography and for generating the morphology and the volumes of the lungs, belonging to a patient. During the filtering stage median, saturated and gradient magnitude filters are applied with the purpose of addressing the noise and artefacts images problems; whereas during the segmentation stage, methods based on clustering processes are used to extract the lungs from the images. The values obtained for the metric that assesses the quality of the hybrid computational technique reflect its good performance. Additionally, these results are very important in clinical processes where both the shapes and volumes of lungs are vital for monitoring some lung diseases that can affect the normal lung physiology. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-04-15T04:08:48Z |
dc.date.available.none.fl_str_mv |
2020-04-15T04:08:48Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.eng.fl_str_mv |
article |
dc.identifier.issn.none.fl_str_mv |
17426596 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/5111 |
identifier_str_mv |
17426596 |
url |
https://hdl.handle.net/20.500.12442/5111 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.eng.fl_str_mv |
pdf |
dc.publisher.eng.fl_str_mv |
IOP Publishing |
dc.source.eng.fl_str_mv |
Journal of Physics: Conference Series Vol. 1386 (2019) |
institution |
Universidad Simón Bolívar |
dc.source.uri.eng.fl_str_mv |
https://iopscience.iop.org/article/10.1088/1742-6596/1386/1/012134 |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/c0406850-bb44-43f7-90f6-ed081d355c8b/download https://bonga.unisimon.edu.co/bitstreams/45e1283e-d3a8-4b61-9e9f-0d7414e675c0/download https://bonga.unisimon.edu.co/bitstreams/20b16a52-94f4-40d0-9e7e-7fc05d99b883/download https://bonga.unisimon.edu.co/bitstreams/c6d46b25-745e-49e1-bc4a-364c50b1b831/download https://bonga.unisimon.edu.co/bitstreams/a323cbcd-56b8-402e-a12f-bc3de4269fec/download https://bonga.unisimon.edu.co/bitstreams/6e8ac7e4-21f0-4a2a-83f2-22e62712f83f/download https://bonga.unisimon.edu.co/bitstreams/ae895905-4299-4d17-bf09-1e84e69e7fa3/download |
bitstream.checksum.fl_str_mv |
733bec43a0bf5ade4d97db708e29b185 01b663fdd5c3dc6bb548b5a3776efc72 4460e5956bc1d1639be9ae6146a50347 4a65a9c1b7a9730ab6956462c8af802c 6d7e7759ba36ec41d98320d643946534 190f29c0d9931101574615415f82fac3 9f67f240bf6d4151ec8f72e91b18730e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076117295824896 |
spelling |
Gelvez-Almeida, E55062614-d175-4da1-834a-d7e54dcc92deHuérfano, Y001cc35e-75ac-48b8-9fd0-3c22464ff80fVera, M847eada8-99d3-4ff1-a613-ae3f62c30f9eVera, M I4c675edd-c7b6-4fee-87e2-feb90cfc363eValbuena, O4286f2e0-ce46-49ce-a106-bd00c21a76e9Salazar-Torres, J40a2a6c9-3e39-4994-9b5a-1c6112bd80002020-04-15T04:08:48Z2020-04-15T04:08:48Z201917426596https://hdl.handle.net/20.500.12442/5111In the presence of pulmonary pathologies such as chronic obstructive pulmonary disease, diffuse pulmonary disease and cystic fibrosis, among others, it is common to require the removal or replacement of a portion of lungs. There are several requirements for both donors and organ receivers (recipients) established in the literature. May be the main one is the volume that the donor's lungs occupy in the thoracic cavity. This parameter is vital because if the volume of the lungs exceeds the thoracic cavity of the recipients the transplant, logically, is unfeasible for physical reasons such as the incompatibility between the receiver lung volume and the donor lung volume. In this sense, the present paper proposes the creation of a hybrid technique, based on digital image processing techniques application to raise the quality of the information related to lungs captured in three-dimensional sequences of computed tomography and for generating the morphology and the volumes of the lungs, belonging to a patient. During the filtering stage median, saturated and gradient magnitude filters are applied with the purpose of addressing the noise and artefacts images problems; whereas during the segmentation stage, methods based on clustering processes are used to extract the lungs from the images. The values obtained for the metric that assesses the quality of the hybrid computational technique reflect its good performance. Additionally, these results are very important in clinical processes where both the shapes and volumes of lungs are vital for monitoring some lung diseases that can affect the normal lung physiology.pdfengIOP Publishinghttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Journal of Physics: Conference SeriesVol. 1386 (2019)https://iopscience.iop.org/article/10.1088/1742-6596/1386/1/012134Usefulness of digital images segmentation in pulmonary transplantationarticlearticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Hardy J, Webb W, Dalton M and Walker G 1963 Lung homotransplantations in man JAMA 186 1065Hiroshi D 2017 Living-related lung transplantation J. Thorac. Dis. 9 3362Park C, Kim T, Lee S, Paik H and Haam S 2015 New predictive equation for lung volume using chest computed tomography for size matching in lung transplantation Transplant. Proc. 47 498Konheim J, Kon Z, Pasrija C, Luo Q, Sanchez P, Garcia J, Griffith B and Jeudy J 2016 Predictive equations for lung volumes from computed tomography for size matching in pulmonary transplantation J. Thorac. Cardiovasc. Surg. 151 1163Wang J, Li F and Li Q 2009 Automated segmentation of lungs with severe interstitial lung disease in ct American Association of Physicists in Medicine 36 4592Rebouças P, Cortez P, Da Silva A, De Albuquerque V and Tavares J 2017 Novel and powerful 3d adaptive crisp active contour method applied in the segmentation of ct lung images Med. Image. Anal 35 503Mingjie X, Shouliang Q, Yong Y, Yueyang T, Lisheng X, Yudong Y and Wei Q 2019 Segmentation of lung parenchyma in ct images using cnn trained with the clustering algorithm generated dataset Biomed. Eng. 18 2González R and Woods R 2001 Digital image processing (New Jersey: Prentice Hall)Huérfano Y, Vera M, Gelvez E, Salazar J, Del Mar A, Valbuena O and Molina V 2019 A computational strategy for the identification of pulmonary squamous cell carcinoma in computerized tomography images J. Phys.: Conf. Ser. 1160 012004Vera M, Medina R, Del Mar A, Arellano J, Huérfano Y and Bravo A 2019 An automatic technique for left ventricle segmentation from msct cardiac volumes J. Phys.: Conf. Ser. 1160 012001Ibañez L 2004 The ITK software guide (USA: Kitware Inc)Dice L 1945 Measures of the amount of ecologic association between species Ecology 26 297LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/c0406850-bb44-43f7-90f6-ed081d355c8b/download733bec43a0bf5ade4d97db708e29b185MD53ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf778084https://bonga.unisimon.edu.co/bitstreams/45e1283e-d3a8-4b61-9e9f-0d7414e675c0/download01b663fdd5c3dc6bb548b5a3776efc72MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/20b16a52-94f4-40d0-9e7e-7fc05d99b883/download4460e5956bc1d1639be9ae6146a50347MD52TEXTUsefulness_DI_segmentation_pulmonary_transplantation.pdf.txtUsefulness_DI_segmentation_pulmonary_transplantation.pdf.txtExtracted texttext/plain14670https://bonga.unisimon.edu.co/bitstreams/c6d46b25-745e-49e1-bc4a-364c50b1b831/download4a65a9c1b7a9730ab6956462c8af802cMD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain15335https://bonga.unisimon.edu.co/bitstreams/a323cbcd-56b8-402e-a12f-bc3de4269fec/download6d7e7759ba36ec41d98320d643946534MD56THUMBNAILUsefulness_DI_segmentation_pulmonary_transplantation.pdf.jpgUsefulness_DI_segmentation_pulmonary_transplantation.pdf.jpgGenerated Thumbnailimage/jpeg1297https://bonga.unisimon.edu.co/bitstreams/6e8ac7e4-21f0-4a2a-83f2-22e62712f83f/download190f29c0d9931101574615415f82fac3MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg3274https://bonga.unisimon.edu.co/bitstreams/ae895905-4299-4d17-bf09-1e84e69e7fa3/download9f67f240bf6d4151ec8f72e91b18730eMD5720.500.12442/5111oai:bonga.unisimon.edu.co:20.500.12442/51112024-08-14 21:52:51.328http://creativecommons.org/licenses/by-nc-nd/4.0/open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |