Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia

Electricity stands as the main energy used for lead-acid battery (LAB) manufacturing. This study introduces an energy management methodology to address the electricity consumption in lead-acid battery plants, improving efficiency standards. The “equivalent battery production” is introduced to define...

Full description

Autores:
Sagastume Gutiérrez, Alexis
Cabello Eras, Juan J.
Sousa Santos, Vladimir
Hernández Herrera, Hernán
Hens, Luc
Vandecasteele, Carlo
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/2277
Acceso en línea:
http://hdl.handle.net/20.500.12442/2277
Palabra clave:
Lead-acid battery
Energy efficiency
Energy management
Battery production
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_8d60f8c7d4261b930baf1da8a9a4af31
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/2277
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia
title Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia
spellingShingle Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia
Lead-acid battery
Energy efficiency
Energy management
Battery production
title_short Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia
title_full Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia
title_fullStr Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia
title_full_unstemmed Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia
title_sort Electricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombia
dc.creator.fl_str_mv Sagastume Gutiérrez, Alexis
Cabello Eras, Juan J.
Sousa Santos, Vladimir
Hernández Herrera, Hernán
Hens, Luc
Vandecasteele, Carlo
dc.contributor.author.none.fl_str_mv Sagastume Gutiérrez, Alexis
Cabello Eras, Juan J.
Sousa Santos, Vladimir
Hernández Herrera, Hernán
Hens, Luc
Vandecasteele, Carlo
dc.subject.eng.fl_str_mv Lead-acid battery
Energy efficiency
Energy management
Battery production
topic Lead-acid battery
Energy efficiency
Energy management
Battery production
description Electricity stands as the main energy used for lead-acid battery (LAB) manufacturing. This study introduces an energy management methodology to address the electricity consumption in lead-acid battery plants, improving efficiency standards. The “equivalent battery production” is introduced to define the energy performance criteria to be met in the different production sections of the battery plant. The methodology combines the guidelines of the ISO 50001 standard with the energy management framework for manufacturing plants. The result is a structured approach for detecting inefficiencies and pinpointing their sources. The management methodology was implemented during 2016. In the formation area 222MWh were saved during 2016. This saving accounts for 3.9% less electricity than forecasted by the energy baseline of the area. Additionally, the emission of some 40 tCO2.eq. associated with the generation of the electricity production were saved. Moreover, at plant level 424MWh were saved, which account for 3.6% less electricity than forecasted by the energy baseline of the plant. In total, around 76 tCO2.eq. were saved as a result of the electricity savings in the plant.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-09-11T22:05:55Z
dc.date.available.none.fl_str_mv 2018-09-11T22:05:55Z
dc.date.issued.none.fl_str_mv 2018-10-10
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 09596526
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/2277
identifier_str_mv 09596526
url http://hdl.handle.net/20.500.12442/2277
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv Elsevier
dc.source.eng.fl_str_mv Journal of Cleaner Production
dc.source.spa.fl_str_mv Vol. 198, (2018)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv https://www.sciencedirect.com/science/article/pii/S0959652618320845
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/fc7bc013-6be3-4741-b90f-581b47245cee/download
bitstream.checksum.fl_str_mv 3fdc7b41651299350522650338f5754d
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv DSpace UniSimon
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1812100496754737152
spelling Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Sagastume Gutiérrez, Alexis04e185a7-ac27-4db8-9321-958486e9b372-1Cabello Eras, Juan J.b32bfd64-d20f-4478-91b4-dd752893d38a-1Sousa Santos, Vladimirccd1a3a4-9490-438a-9313-0aafbfc3fa37-1Hernández Herrera, Hernán7487ba17-70a1-4d7a-bcac-197ea432af08-1Hens, Luc5648895b-231b-48fd-8ab8-562c93fb9b60-1Vandecasteele, Carlo92275bd1-0167-4852-b7ac-8ee0f3bc457d-12018-09-11T22:05:55Z2018-09-11T22:05:55Z2018-10-1009596526http://hdl.handle.net/20.500.12442/2277Electricity stands as the main energy used for lead-acid battery (LAB) manufacturing. This study introduces an energy management methodology to address the electricity consumption in lead-acid battery plants, improving efficiency standards. The “equivalent battery production” is introduced to define the energy performance criteria to be met in the different production sections of the battery plant. The methodology combines the guidelines of the ISO 50001 standard with the energy management framework for manufacturing plants. The result is a structured approach for detecting inefficiencies and pinpointing their sources. The management methodology was implemented during 2016. In the formation area 222MWh were saved during 2016. This saving accounts for 3.9% less electricity than forecasted by the energy baseline of the area. Additionally, the emission of some 40 tCO2.eq. associated with the generation of the electricity production were saved. Moreover, at plant level 424MWh were saved, which account for 3.6% less electricity than forecasted by the energy baseline of the plant. In total, around 76 tCO2.eq. were saved as a result of the electricity savings in the plant.engElsevierJournal of Cleaner ProductionVol. 198, (2018)https://www.sciencedirect.com/science/article/pii/S0959652618320845Lead-acid batteryEnergy efficiencyEnergy managementBattery productionElectricity management in the production of lead-acid batteries: The industrial case of a production plant in Colombiaarticlehttp://purl.org/coar/resource_type/c_6501Abdelaziz, E.A., Saidur, R., Mekhilef, S., 2011. A review on energy saving strategies in industrial sector. Renew. Sustain. Energy Rev. 15, 150e168.Akbaba, M., 1999. Energy conservation by using energy efficient electric motors. Appl. Energy 64, 149e158.ANSI/NEMA MG 1-2011, 2011. American National Standard Motors and Generator. American National Standards Institute (NEMA), Virginia. US.Apostolos, F., Alexios, P., Georgios, P., Panagiotis, S., George, C., 2013. Energy efficiency of manufacturing processes: a critical review. Procedia CIRP 7, 628e633.Benedetti, M., Cesarotti, V., Introna, V., 2016. From energy targets setting to energyaware operations control and back: an advanced methodology for energy efficient manufacturing. J. Clean. Prod. 167, 1518e1533.Boharb, A., Allouhi, A., Saidur, R., Kousksou, T., Jamil, A., Mourad, Y., Benbassou, A., 2016. Auditing and analysis of energy consumption of an industrial site in Morocco. Energy 101, 332e342.Bohdanowicz, P., Martinac, I., 2007. Determinants and benchmarking of resource consumption in hotels. Case study of Hilton international and Scandic in Europe. Energy Build. 39, 82e95.Brunke, J.C., Johansson, M., Thollander, P., 2014. Empirical investigation of barriers and drivers to the adoption of energy conservation measures, energy management practices and energy services in the Swedish iron and steel industry. J. Clean. Prod. 84, 509e525.Bunse, K., Vodicka, M., Sch€onsleben, P., Brülhart, M., Ernst, F.O., 2011. Integrating energy efficiency performance in production managementegap analysis between industrial needs and scientific literature. J. Clean. Prod. 19, 667e679.Cabello, J.J., Sagastume, A., Hernández, D., Hens, L., Vandecasteele, C., 2013. Improving the environmental performance of an earthwork project using cleaner production strategies. J. Clean. Prod. 47, 368e376.Cabello, J.J., Santos, V., Sagastume, A., Álvarez Guerra, M., Haeseldonckx, D., Vandecasteele, C., 2016. Tools to improve forecasting and control of the electricity consumption in hotels. J. Clean. Prod. 137, 803e812.Cagno, E., Trianni, A., 2014. Evaluating the barriers to specific industrial energy efficiency measures: an exploratory study in small and medium-sized enterprises. J. Clean. Prod. 82, 70e83.Cai, W., Liu, F., Xie, J., Zhou, X., 2017a. An energy management approach for the mechanical manufacturing industry through developing a multi-objective energy benchmark. Energy Convers. Manag. 132, 361e371.Cai, W., Liu, F., Zhang, H., Liu, P., Tuo, J., 2017b. Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement. Appl. Energy 202, 715e725.Carpenter, J., Woodbury, K.A., O'Neill, Z., 2018. Using change-point and Gaussian process models to create baseline energy models in industrial facilities: A comparison. Applied Energy 213, 415e425.Dahodwalla, H., Herat, S., 2000. Cleaner production options for lead-acid battery manufacturing industry. J. Clean. Prod. 8, 133e142.Dindorf, R., 2012. Estimating potential energy savings in compressed air systems. Procedia Eng. 39, 204e211.Dobes, V., 2013. New tool for promotion of energy management and cleaner production on no cure, no pay basis. J. Clean. Prod. 39, 255e264DOE, 2008. Improving Motor and Drive System Performance: a Sourcebook for Industry. U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Industrial Technologies Program. National Renewable Energy Laboratory, Colorado. USA.Dongellini, M., Marinosci, C., Morini, G.L., 2014. Energy audit of an industrial site: a case study. Energy Procedia 45, 424e433.Duarte, M., Braido, B., Duchatsch, H., Rodrigues, M., Antoniassi, B., 2017. Automation benefits in the formation process of lead-acid batteries. Indepen. J. Manag. Prod. 8, 91e107.Edgar, T.F., Pistikopoulos, E.N., 2017. Smart manufacturing and energy systems. Comput. Chem. Eng. https://doi.org/10.1016/j.compchemeng.2017.10.027.ElMaraghy, H.A., Youssef, A.M., Marzouk, A.M., ElMaraghy, W.H., 2016. Energy use analysis and local benchmarking of manufacturing lines. J. Clean. Prod. 163, 36e48.Fahad, M., Naqvi, S.A.A., Atir, M., Zubair, M., Shehzad, M.M., 2017. Energy management in a manufacturing industry through layout design. Procedia Manuf. 8, 168e174.Fawkes, S., 2016. Energy Efficiency: the Definitive Guide to the Cheapest, Cleanest, Fastest Source of Energy. Routledge, New York. US.Fernando, Y., Hor, W.L., 2017. Impacts of energy management practices on energy efficiency and carbon emissions reduction: a survey of malaysian manufacturing firms. Resour. Conserv. Recycl. 126, 62e73.Gopalakrishnan, B., Ramamoorthy, K., Crowe, E., Chaudhari, S., Latif, H., 2014. A structured approach for facilitating the implementation of ISO 50001 standard in the manufacturing sector. Sustain. Energy Technol. Assess. 7, 154e165.Gordić, D., Babić, M., Jovićić, N., Šušteršić, V., Konćalović, D., Jelić, D., 2010. Development of energy management systemeCase study of Serbian car manufacturer. Energy Convers. Manag. 51, 2783e2790.Hens, L., Block, C., Cabello, J.J., Sagastume, A., Garcia, D., Chamorro, C., Herrera, K., Haeseldonckx, D., Vandecasteele, C., 2018. On the evolution of “Cleaner Production” as a concept and a practice. J. Clean. Prod. 172, 3323e3333.ISO 50001:2011(E), 2011. International Standard, Energy Management Systems erequirements with Guidance for Use. International Organization for Standardization.ISO 50006:2014(E). Energy Management Systems e Measuring Energy Performance Using Energy Baselines (EnB) and Energy Performance Indicators (EnPI) e General Principles and Guidance.ISO 50004:2014(E), 2014b. Energy Management Systems e Guidance for the Implementation, Maintenance and Improvement of an Energy Management System. International Organization for Standardization.Javied, T., Rackow, T., Franke, J., 2015. Implementing energy management system to increase energy efficiency in manufacturing companies. Procedia CIRP 26, 156e161.Johansson, M.T., Thollander, P., 2018. A review of barriers to and driving forces for improved energy efficiency in Swedish industryerecommendations for successful in-house energy management. Renew. Sustain. Energy Rev. 82, 618e628.Jovanović, B., Filipović, J., Bakić, V., 2017. Energy management system implementation in Serbian manufacturingePlan-Do-Check-Act cycle approach. J. Clean. Prod. 162, 1144e1156.Jung, J., Zhang, L., Zhang, J., 2016. Lead-acid Battery Technologies. Fundamentals, Materials, and Applications. CRC Press. Taylor & Francis Group, New York.Kalair, A., Abas, N., Kalair, A.R., Saleem, Z., Khan, N., 2017. Review of harmonic analysis, modeling and mitigation techniques. Renew. Sustain. Energy Rev. 78, 1152e1187.Kanneganti, H., Gopalakrishnan, B., Crowe, E., Al-Shebeeb, O., Yelamanchi, T., Nimbarte, A., Currie, K., Abolhassani, A., 2017. Specification of energy assessment methodologies to satisfy ISO 50001 energy management standard. Sustain. Energy Technol. Assessments 23, 121e135.Kaya, D., Phelan, P., Chau, D., Ibrahim Sarac, H., 2002. Energy conservation in compressed-air systems. Int. J. Energy Res. 26, 837e849.Kiessling, R., 1992. Lead acid Battery Formation Techniques. Digatron Firing Circuits, 15.08.16.. Available at: http://www.digatron.com/fileadmin/pdf/lead_acid.pdf.Kluczek, A., Olszewski, P., 2017. Energy audits in industrial processes. J. Clean. Prod. 142, 3437e3453.Liu, W., Sang, J., Chen, L., Tian, J., Zhang, H., Palma, G.O., 2015. Life cycle assessment of lead-acid batteries used in electric bicycles in China. J. Clean. Prod. 108, 1149e1156.Liu, W., Tian, J., Chen, L., Guo, Y., 2017. Temporal and spatial characteristics of lead emissions from the lead-acid battery manufacturing industry in China. Environ. Pollut. 220, 696e703.May, G., Stahl, B., Taisch, M., Kiritsis, D., 2017. Energy management in manufacturing: from literature review to a conceptual framework. J. Clean. Prod. 167, 1464e1489.May, G., Taisch, M., Stahl, B., Sadr, V., 2012. Toward energy efficient manufacturing: a study on practices and viewpoint of the industry (pp. 1e8). In: IFIP International Conference on Advances in Production Management Systems. Springer Berlin Heidelberg.Mousavi, S., Kara, S., Kornfeld, B., 2016. A hierarchical framework for concurrent assessment of energy and water efficiency in manufacturing systems. J. Clean. Prod. 133, 88e98.Munguia, N., Vargas-Betancourt, N., Esquer, J., Giannetti, B.F., Liu, G., Velazquez, L.E., 2018. Driving competitive advantage through energy efficiency in Mexican maquiladoras. J. Clean. Prod. 172, 3379e3386.Paramonova, S., Thollander, P., Ottosson, M., 2015. Quantifying the extended energy efficiency gap-evidence from Swedish electricity-intensive industries. Renew. Sustain. Energy Rev. 51, 472e483.Pavlov, D., 2017. Lead-acid Batteries: Science and Technology. A Handbook of Leadacid Battery Technology and its Influence on the Product, second ed. Elsevier, Amsterdam. The Netherlands.Petkova, G., Pavlov, D., 2003. Influence of charge mode on the capacity and cycle life of leadeacid battery negative plates. J. Power Sources 113, 355e362.Pierce, L.W., 1996. Transformer design and application considerations for nonsinusoidal load currents. IEEE Trans. Ind. Appl. 32, 633e645.Rantik, M., 1999. Life Cycle Assessment of Five Batteries for Electric Vehicles under Different Charging Regimes. KFB e Kommunikations forsknings-beredningen, Stockholm.Richert, M., 2017. An energy management framework tailor-made for SMEs: case study of a German car company. J. Clean. Prod. 164, 221e229.Roche, M., Toyne, P., 2004. Green leaddoxymoron or sustainable development for the leadeacid battery industry? J. Power Sources 133, 3e7.Rossiter, A.P., Jones, B.P., 2015. Energy Management and Efficiency for the Process Industries. John Wiley & Sons, New Jersey. USA.Sa, A., Thollander, P., Cagno, E., 2017. Assessing the driving factors for energy management program adoption. Renew. Sustain. Energy Rev. 74, 538e547.Sagastume, A., Cabello, J.J., Hens, L., Vandecasteele, C., 2017. The biomass based electricity generation potential of the province of Cienfuegos, Cuba. Waste Biomass Valorization 8, 2075e2085.Saidur, R., 2010. A review on electrical motors energy use and energy savings. Renew. Sustain. Energy Rev. 14, 877e898.Sauer, I.L., Tatizawa, H., Salotti, F.A., Mercedes, S.S., 2015. A comparative assessment of Brazilian electric motors performance with minimum efficiency standards. Renew. Sustain. Energy Rev. 41, 308e318.Schulze, M., Nehler, H., Ottosson, M., Thollander, P., 2016. Energy management in industryea systematic review of previous findings and an integrative conceptual framework. J. Clean. Prod. 112, 3692e3708.Sims, R.E.H., Schock, R.N., Adegbululgbe, A., Fenhann, J., Konstantinaviciute, I., Moomaw, W., Nimir, H.B., Schlamadinger, B., Torres-Martínez, J., Turner, C., Uchiyama, Y., Vuori, S.J.V., Wamukonya, N., Zhang, X., 2007. Energy supply. In: Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (Eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Sivakumar, A. and Selvan, N.M., Reduction of source current harmonics in ANN controlled induction motor, Alexandria Eng. J.. doi.org/10.1016/j.aej.2017.03.048Sullivan, J.L., Gaines, L., 2012. Status of life cycle inventories for batteries. Energy Convers. Manag. 58, 134e148.Sullivan, J.L., Gaines, L., 2010. A Review of Battery Life-cycle Analysis: State of Knowledge and Critical Needs (No. ANL/ESD/10e17). Argonne National Laboratory (ANL), USA.Sunthornnapha, T., 2017. Utilization of MLP and linear regression methods to build a reliable energy baseline for self-benchmarking evaluation. Energy Proc. 141, 189e193.Talaei, A., Ahiduzzaman, M., Kumar, A., 2018. Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation potentials in the chemical sector. Energy 153, 231e247.UNEP, 2004. Cleaner Production-energy Efficiency (CP-ee) Manual, 1rst ed. United Nations Publications, Oxford. UK.UNIDO, 2018. United Nations Industrial Development Organization. Resource Efficient and Cleaner Production (RECP). https://www.unido.org/our-focus/ safeguarding-environment/resource-efficient-and-low-carbon-industrialproduction/ resource-efficient-and-cleaner-production-recp .Waide, P., Brunner, C.U., 2011. Energy-efficiency Policy Opportunities for Electric Motor-drive Systems. International Energy Agency, Paris, France, 24.01.2018. https://www.energiestiftung.ch/files/downloads/energiethemenenergieeffizienz- industriegewerbe/ee_for_electricsystems-2-.pdf.Wang, Q., Liu,W., Yuan, X., Tang, H., Tang, Y.,Wang, M., Zuo, J., Song, Z., Sun, J., 2018. Environmental impact analysis and process optimization of batteries based on life cycle assessment. J. Clean. Prod. 174, 1262e1273.Unidad de Planeación Minero Energética (UPME), 2017. Informe mensual de variables de generación y del mercado eléctrico colombiano. Enero 2015 e Diciembre 2016. Ministerio de Energía y Minas, Colombia.LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/fc7bc013-6be3-4741-b90f-581b47245cee/download3fdc7b41651299350522650338f5754dMD5220.500.12442/2277oai:bonga.unisimon.edu.co:20.500.12442/22772019-04-11 21:51:40.328metadata.onlyhttps://bonga.unisimon.edu.coDSpace UniSimonbibliotecas@biteca.comPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=