Nuclear factor erythroid 2 – related factor 2 and its relationship with cellular response in nickel exposure: a systems biology analysis
Background: Nickel and nickel-containing compounds (NCC) are known human carcinogens. However, the precise molecular mechanisms of nickel-induced malignant transformation remain unknown. Proposed mechanisms suggest that nickel and NCC may participate in the dual activation/inactivation of enzymatic...
- Autores:
-
Jiménez-Vidal, Luisa
Espitia-Pérez, Pedro
Torres-Ávila, José
Ricardo-Caldera, Dina
Salcedo-Arteaga, Shirley
Galeano-Páez, Claudia
Pastor-Sierra, Karina
Espitia-Pérez, Lyda
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/4599
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/4599
- Palabra clave:
- Nickel
Nrf2
ER-stress
UPR
NiSO4
Ni3S2
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_8d465233394720eefaaa402a77c24655 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/4599 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Nuclear factor erythroid 2 – related factor 2 and its relationship with cellular response in nickel exposure: a systems biology analysis |
title |
Nuclear factor erythroid 2 – related factor 2 and its relationship with cellular response in nickel exposure: a systems biology analysis |
spellingShingle |
Nuclear factor erythroid 2 – related factor 2 and its relationship with cellular response in nickel exposure: a systems biology analysis Nickel Nrf2 ER-stress UPR NiSO4 Ni3S2 |
title_short |
Nuclear factor erythroid 2 – related factor 2 and its relationship with cellular response in nickel exposure: a systems biology analysis |
title_full |
Nuclear factor erythroid 2 – related factor 2 and its relationship with cellular response in nickel exposure: a systems biology analysis |
title_fullStr |
Nuclear factor erythroid 2 – related factor 2 and its relationship with cellular response in nickel exposure: a systems biology analysis |
title_full_unstemmed |
Nuclear factor erythroid 2 – related factor 2 and its relationship with cellular response in nickel exposure: a systems biology analysis |
title_sort |
Nuclear factor erythroid 2 – related factor 2 and its relationship with cellular response in nickel exposure: a systems biology analysis |
dc.creator.fl_str_mv |
Jiménez-Vidal, Luisa Espitia-Pérez, Pedro Torres-Ávila, José Ricardo-Caldera, Dina Salcedo-Arteaga, Shirley Galeano-Páez, Claudia Pastor-Sierra, Karina Espitia-Pérez, Lyda |
dc.contributor.author.none.fl_str_mv |
Jiménez-Vidal, Luisa Espitia-Pérez, Pedro Torres-Ávila, José Ricardo-Caldera, Dina Salcedo-Arteaga, Shirley Galeano-Páez, Claudia Pastor-Sierra, Karina Espitia-Pérez, Lyda |
dc.subject.eng.fl_str_mv |
Nickel Nrf2 ER-stress UPR NiSO4 Ni3S2 |
topic |
Nickel Nrf2 ER-stress UPR NiSO4 Ni3S2 |
description |
Background: Nickel and nickel-containing compounds (NCC) are known human carcinogens. However, the precise molecular mechanisms of nickel-induced malignant transformation remain unknown. Proposed mechanisms suggest that nickel and NCC may participate in the dual activation/inactivation of enzymatic pathways involved in cell defenses against oxidative damage, where Nuclear factor-erythroid 2 related factor 2 (Nrf2) plays a central role. Methods: For assessing the potential role of proteins involved in the Nrf2-mediated response to nickel and NCC exposure, we designed an interactome network using the STITCH search engine version 5.0 and the STRING software 10.0. The major NCC-protein interactome (NCPI) generated was analyzed using the MCODE plugin, version 1.5.1 for the detection of interaction modules or subnetworks. Main centralities of the NCPI were determined with the CentiScape 2.2 plugin of Cytoscape 3.4.0 and main biological processes associated with each cluster were assessed using the BiNGO plugin of Cytoscape 3.4.0. Results: Water-soluble NiSO4 and insoluble Ni3S2 were the most connected to proteins involved in the NCPI network. Nfr2 was detected as one of the most relevant proteins in the network, participating in several multifunctional protein complexes in clusters 1, 2, 3 and 5. Ontological analysis of cluster 3 revealed several processes related to unfolded protein response (UPR) and response to endoplasmic reticulum (ER) stress. Conclusions: Cellular response to NCC exposure was very comparable, particularly concerning oxidative stress response, inflammation, cell cycle/proliferation, and apoptosis. In this cellular response, Nfr2 was highly centralized and participated in several multifunctional protein complexes, including several related to ER-stress. These results add evidence on the possible Ni2+ induced – ER stress mainly associated with insoluble NCC. In this scenario, we also show how protein degradation mediated by ubiquitination seems to play key roles in cellular responses to Ni. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-01-29T22:36:58Z |
dc.date.available.none.fl_str_mv |
2020-01-29T22:36:58Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.eng.fl_str_mv |
article |
dc.identifier.issn.none.fl_str_mv |
20506511 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/4599 |
identifier_str_mv |
20506511 |
url |
https://hdl.handle.net/20.500.12442/4599 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
dc.publisher.eng.fl_str_mv |
BMC |
dc.source.eng.fl_str_mv |
BMC Pharmacology and Toxicology Vol. 20 (Suppl 1), (2019) |
institution |
Universidad Simón Bolívar |
dc.source.uri.eng.fl_str_mv |
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921378/pdf/40360_2019_Article_360.pdf |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/4b7b73f3-8750-411a-aed6-c45289fdffeb/download https://bonga.unisimon.edu.co/bitstreams/4bc9d5e6-0f4a-46e2-bf5a-11392b0d0e26/download https://bonga.unisimon.edu.co/bitstreams/3d9dfd60-1b72-44b1-b699-0689706897f3/download https://bonga.unisimon.edu.co/bitstreams/165f4e1f-dbe1-4017-a9c0-fedc2135fa04/download https://bonga.unisimon.edu.co/bitstreams/06b48f73-4ceb-4d1a-80f7-01739c1cb7ae/download https://bonga.unisimon.edu.co/bitstreams/8edcba0c-e73d-4f17-9b45-c397c83d5bd8/download https://bonga.unisimon.edu.co/bitstreams/938ef454-4a4d-404e-9b63-366e366f5df3/download |
bitstream.checksum.fl_str_mv |
4cf648b9cd788361950931d3648a0172 4460e5956bc1d1639be9ae6146a50347 733bec43a0bf5ade4d97db708e29b185 cba10108d5ea6e1a8b072a2037a71cbe dc2035888c92f5a040521680e7709ce6 031f73149ae02deb31981d8e55b580ee b1491801a3acb8fec608dcd108061b3d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076171885740032 |
spelling |
Jiménez-Vidal, Luisad2668ef4-2165-4a9d-b437-3608fc2dc64dEspitia-Pérez, Pedro9b91d650-d997-4d18-8816-7533217bbe79Torres-Ávila, Joséc6ad5e8a-dff2-4e2d-9487-8535f5fc2a4cRicardo-Caldera, Dinab4efd4e2-de08-4718-a509-d479fb044968Salcedo-Arteaga, Shirleyb6022871-47c5-4bf8-801d-f2d13457913bGaleano-Páez, Claudia87bf0cca-be30-4818-9e64-04edc0eb5171Pastor-Sierra, Karina3e3568bc-f7f2-49b4-9945-3c728a562227Espitia-Pérez, Lyda8c646a69-2fd1-499d-9691-d31053b5bd0b2020-01-29T22:36:58Z2020-01-29T22:36:58Z201920506511https://hdl.handle.net/20.500.12442/4599Background: Nickel and nickel-containing compounds (NCC) are known human carcinogens. However, the precise molecular mechanisms of nickel-induced malignant transformation remain unknown. Proposed mechanisms suggest that nickel and NCC may participate in the dual activation/inactivation of enzymatic pathways involved in cell defenses against oxidative damage, where Nuclear factor-erythroid 2 related factor 2 (Nrf2) plays a central role. Methods: For assessing the potential role of proteins involved in the Nrf2-mediated response to nickel and NCC exposure, we designed an interactome network using the STITCH search engine version 5.0 and the STRING software 10.0. The major NCC-protein interactome (NCPI) generated was analyzed using the MCODE plugin, version 1.5.1 for the detection of interaction modules or subnetworks. Main centralities of the NCPI were determined with the CentiScape 2.2 plugin of Cytoscape 3.4.0 and main biological processes associated with each cluster were assessed using the BiNGO plugin of Cytoscape 3.4.0. Results: Water-soluble NiSO4 and insoluble Ni3S2 were the most connected to proteins involved in the NCPI network. Nfr2 was detected as one of the most relevant proteins in the network, participating in several multifunctional protein complexes in clusters 1, 2, 3 and 5. Ontological analysis of cluster 3 revealed several processes related to unfolded protein response (UPR) and response to endoplasmic reticulum (ER) stress. Conclusions: Cellular response to NCC exposure was very comparable, particularly concerning oxidative stress response, inflammation, cell cycle/proliferation, and apoptosis. In this cellular response, Nfr2 was highly centralized and participated in several multifunctional protein complexes, including several related to ER-stress. These results add evidence on the possible Ni2+ induced – ER stress mainly associated with insoluble NCC. In this scenario, we also show how protein degradation mediated by ubiquitination seems to play key roles in cellular responses to Ni.pdfengBMCAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2BMC Pharmacology and ToxicologyVol. 20 (Suppl 1), (2019)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921378/pdf/40360_2019_Article_360.pdfNickelNrf2ER-stressUPRNiSO4Ni3S2Nuclear factor erythroid 2 – related factor 2 and its relationship with cellular response in nickel exposure: a systems biology analysisarticlearticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501IARC. IARC Monographs on the Valuation of the Carcinogenic Risks of Chemicals to Humans: Chromium, Nickel and Welding, vol. 49. Lyon: IARC; 1990. p. 447–525.Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160:1–40.Efremenko AY, Campbell JL, Dodd DE, Oller AR, Clewell HJ 3rd. Time- and concentration-dependent genomic responses of the rat airway to inhaled nickel sulfate. Environ Mol Mutagen. 2017;58:607–18.Kasprzak KS, Sunderman FW, Salnikow K. Nickel carcinogenesis. Mutat Res. 2003;533:67–97.Goodman JE, Prueitt RL, Dodge DG, Thakali S. Carcinogenicity assessment of water-soluble nickel compounds. Crit Rev Toxicol. 2009;39:365–417.Salnikow K, Kasprzak KS. Nickel-Dependent Gene Expression. In: Nickel and Its Surprising Impact in Nature. Chichester: John Wiley & Sons, Ltd; 2007. p. 581–618.Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chem Res Toxicol. 2008;21:28–44.Costa M, Davidson TL, Chen H, Ke Q, Zhang P, Yan Y, Huang C, Kluz T. Nickel carcinogenesis: epigenetics and hypoxia signaling. Mutat Res. 2005; 592:79–88.Das K, Das S, Dhundasi S. Nickel, its adverse health effects & oxidative stress. Indian J Med Res. 2008;128:412.Kim HL, Seo YR. Molecular and genomic approach for understanding the gene-environment interaction between Nrf2 deficiency and carcinogenic nickel-induced DNA damage. Oncol Rep. 2012;28:1959–67.Lewis JB, Messer RL, McCloud VV, Lockwood PE, Hsu SD, Wataha JC. Ni(II) activates the Nrf2 signaling pathway in human monocytic cells. Biomaterials. 2006;27:5348–56.Zhao X, Wen L, Dong M, Lu X. Sulforaphane activates the cerebral vascular Nrf2-ARE pathway and suppresses inflammation to attenuate cerebral vasospasm in rat with subarachnoid hemorrhage. Brain Res. 1653;2016:1–7.Menegon S, Columbano A, Giordano S. The dual roles of NRF2 in Cancer. Trends Mol Med. 2016;22:578–93.Cho H-Y, Reddy SP, Kleeberger SR. Nrf2 defends the lung from oxidative stress. Antioxid Redox Signal. 2006;8:76–87.Son YO, Pratheeshkumar P, Divya SP, Zhang Z, Shi X. Nuclear factor erythroid 2-related factor 2 enhances carcinogenesis by suppressing apoptosis and promoting autophagy in nickel-transformed cells. J Biol Chem. 2017;292:8315–30.Yu X, Robinson JF, Sidhu JS, Hong S, Faustman EM. A system-based comparison of gene expression reveals alterations in oxidative stress, disruption of ubiquitin-proteasome system and altered cell cycle regulation after exposure to cadmium and Methylmercury in mouse embryonic fibroblast. Toxicol Sci. 2010;114:356–77.Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth A, Simonovic M, et al. STRING 8--a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res. 2009;37:D412–6.Snel B, Lehmann G, Bork P, Huynen MA. STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 2000;28:3442–4.Feltes BC, JdF P, Notari DL, Bonatto D. Toxicological Effects of the Different Substances in Tobacco Smoke on Human Embryonic Development by a Systems Chemo-Biology Approach. PLOS ONE. 2013;8:e61743.Cempel M, Nikel G. Nickel: a review of its sources and environmental toxicology. Pol J Environ Stud. 2006;15.Group IW: Nickel and nickel compounds. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, No 100C. Edited by humans. IWGotEoCRt. Lyon (FR): International Agency for Research on Cancer; 2012.Schaumlöffel D. Nickel species: analysis and toxic effects. J Trace Elem Med Biol. 2012;26:1–6.Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, Tyers M. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 2006;34: D535–9.Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4:2.Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-Campilo I, Creech M, Gross B. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007;2:2366.Rosado JO, Henriques JAP, Bonatto D. A systems pharmacology analysis of major chemotherapy combination regimens used in gastric cancer treatment: predicting potential new protein targets and drugs. Curr Cancer Drug Targets. 2011;11:849–69.Scardoni G, Petterlini M, Laudanna C. Analyzing biological network parameters with CentiScaPe. Bioinformatics (Oxford, England). 2009;25: 2857–9.Barthelemy M. Betweenness centrality in large complex networks. The European physical journal B. 2004;38:163–8.Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage. 2010;52:1059–69.Kahl VFS, da Silva J, da Silva FR. Influence of exposure to pesticides on telomere length in tobacco farmers: a biology system approach. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2016; 791:19–26.Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet. 2000;25:25–9.Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics (Oxford, England). 2005;21:3448–9.Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol. 1995:289–300.Evans RM, Davies PJ, Costa M. Video time-lapse microscopy of phagocytosis and intracellular fate of crystalline nickel sulfide particles in cultured mammalian cells. Cancer Res. 1982;42:2729–35.Kasprzak K, Sunderman JF. Mechanisms of dissolution of nickel subsulfide in rat serum. Res Commun Chem Pathol Pharmacol. 1977;16:95–108.Goodman JE, Prueitt RL, Thakali S, Oller AR. The nickel ion bioavailability model of the carcinogenic potential of nickel-containing substances in the lung. Crit Rev Toxicol. 2011;41:142–74.Costa M, Mollenhauer HH. Carcinogenic activity of particulate nickel compounds is proportional to their cellular uptake. Science. 1980;209: 515–7.Cangul H, Broday L, Salnikow K, Sutherland J, Peng W, Zhang Q, Poltaratsky V, Yee H, Zoroddu MA, Costa M. Molecular mechanisms of nickel carcinogenesis. Toxicol Lett. 2002;127:69–75.Grisham M, Jourd'Heuil D, Wink D. chronic inflammation and reactive oxygen and nitrogen metabolism–implications in DNA damage and mutagenesis. Aliment Pharmacol Ther. 2000;14:3–9.Huang X, Klein CB, Costa M. Crystalline Ni3S2 specifically enhances the formation of oxidants in the nuclei of CHO cells as detected by dichlorofluorescein. Carcinogenesis. 1994;15:545–8.Costa M, Salnikow K, Sutherland JE, Broday L, Peng W, Zhang Q, Kluz T: The role of oxidative stress in nickel and chromate genotoxicity. In Oxygen/ Nitrogen Radicals: Cell Injury and Disease. Springer; 2002: 265–275.Cavallo D, Ursini CL, Setini A, Chianese C, Piegari P, Perniconi B, Iavicoli S. Evaluation of oxidative damage and inhibition of DNA repair in an in vitro study of nickel exposure. Toxicol in Vitro. 2003;17:603–7.Saini S, Nair N, Saini MR. Prenatal exposure to nickel on pregnant Swiss albino mice and fetal development. Toxicol Environ Chem. 2014;96:650–9.Saini S, Nair N, Saini MR. Embryotoxic and teratogenic effects of nickel in Swiss albino mice during organogenetic period. Biomed Res Int. 2013;2013: 701439.Kim K, Wang CH, Ok YS, Lee SE. Heart developmental toxicity by carbon black waste generated from oil refinery on zebrafish embryos (Danio rerio): combined toxicity on heart function by nickel and vanadium. J Hazard Mater. 2019;363:127–37.Mussotter F, Tomm JM, El Ali Z, Pallardy M, Kerdine-Römer S, Götz M, von Bergen M, Haase A, Luch A. Proteomics analysis of dendritic cell activation by contact allergens reveals possible biomarkers regulated by Nrf2. Toxicol Appl Pharmacol. 2016;313:170–9.Lin C-YCT-H. NICKEL TOXICITY TO HUMAN TERM PLACENTA: IN VITRO STUDY ON LIPID PEROXIDATION. J Toxic Environ Health A. 1998;54:37–47.Liu C-M, Zheng G-H, Ming Q-L, Chao C, Sun J-M. Sesamin protects mouse liver against nickel-induced oxidative DNA damage and apoptosis by the PI3K-Akt pathway. J Agric Food Chem. 2013;61:1146–54.Kweider N, Huppertz B, Rath W, Lambertz J, Caspers R, ElMoursi M, Pecks U, Kadyrov M, Fragoulis A, Pufe T. The effects of Nrf2 deletion on placental morphology and exchange capacity in the mouse. J Matern Fetal Neonatal Med. 2017;30:2068–73.Sarkar B. Heavy metals in the environment: Taylor & Francis; 2002.Sutherland JE, Peng W, Zhang Q, Costa M. The histone deacetylase inhibitor trichostatin a reduces nickel-induced gene silencing in yeast and mammalian cells. Mutat Res. 2001;479:225–33.Hattori N, Ushijima T. Compendium of aberrant DNA methylation and histone modifications in cancer. Biochem Biophys Res Commun. 2014;455: 3–9.Ke Q, Ellen TP, Costa M. Nickel compounds induce histone ubiquitination by inhibiting histone deubiquitinating enzyme activity. Toxicol Appl Pharmacol. 2008;228:190–9.Ke Q, Davidson T, Chen H, Kluz T, Costa M. Alterations of histone modifications and transgene silencing by nickel chloride. Carcinogenesis. 2006;27:1481–8.Ma L, Bai Y, Pu H, Gou F, Dai M, Wang H, He J, Zheng T, Cheng N. Histone methylation in nickel-smelting industrial workers. PLoS One. 2015;10: e0140339.Kang J, Zhang Y, Chen J, Chen H, Lin C, Wang Q, Ou Y. Nickel-induced histone hypoacetylation: the role of reactive oxygen species. Toxicol Sci. 2003;74:279–86.Mercado N, Thimmulappa R, Thomas CMR, Fenwick PS, Chana KK, Donnelly LE, Biswal S, Ito K, Barnes PJ. Decreased histone deacetylase 2 impairs Nrf2 activation by oxidative stress. Biochem Biophys Res Commun. 2011;406:292–8.Wang B, Zhu X, Kim Y, Li J, Huang S, Saleem S, Li R-c, Xu Y, Dore S, Cao W. Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Radic Biol Med. 2012;52: 928–36.Vomund S, Schäfer A, Parnham MJ, Brüne B, von Knethen A. Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci. 2017;18:2772.Khobta A, Epe B. Interactions between DNA damage, repair, and transcription. Mutat Res. 2012;736:5–14.House NCM, Koch MR, Freudenreich CH. Chromatin modifications and DNA repair: beyond double-strand breaks. Front Genet. 2014;5:296.Linder T. Direct Ni2+ antigen formation on cultured human dendritic cells. Immunology. 1999;96:578–85.Medici S, Peana M, Nurchi VM, Zoroddu MA. The involvement of amino acid side chains in shielding the nickel coordination site: an NMR study. Molecules. 2013;18:12396–414.Thierse H-J, Gamerdinger K, Junkes C, Guerreiro N, Weltzien HU. T cell receptor (TCR) interaction with haptens: metal ions as non-classical haptens. Toxicology. 2005;209:101–7.Goebeler M, Meinardus-Hager G, Roth J, Goerdt S, Sorg C. Nickel chloride and cobalt chloride, two common contact sensitizers, directly induce expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule (ELAM-1) by endothelial cells. J Investig Dermatol. 1993;100:759–65.Chana M, Lewis JB, Davis R, Elam Y, Hobbs D, Lockwood PE, Wataha JC, Messer RL. Biological effects of Ni(II) on monocytes and macrophages in normal and hyperglycemic environments. J Biomed Mater Res A. 2018; 106(9):2433–9.Cruz MT, Goncalo M, Figueiredo A, Carvalho AP, Duarte CB, Lopes MC. Contact sensitizer nickel sulfate activates the transcription factors NF-kB and AP-1 and increases the expression of nitric oxide synthase in a skin dendritic cell line. Exp Dermatol. 2004;13:18–26.Huang Y, Davidson G, Li J, Yan Y, Chen F, Costa M, Chen LC, Huang C. Activation of nuclear factor-kappaB and not activator protein-1 in cellular response to nickel compounds. Environ Health Perspect. 2002;110:835.Lewis JB, Wataha JC, McCloud V, Lockwood PE, Messer RL, Tseng WY. Au(III), Pd(II), Ni(II), and hg(II) alter NF kappa B signaling in THP1 monocytic cells. J Biomed Mater Res A. 2005;74:474–81.Lewis JB, Messer RL, Pitts L, Hsu SD, Hansen JM, Wataha JC: Ni (II) ions dysregulate cytokine secretion from human monocytes. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials 2009, 88:358–365.Pan H, Wang H, Wang X, Zhu L, Mao L. The absence of Nrf2 enhances NFkappaB- dependent inflammation following scratch injury in mouse primary cultured astrocytes. Mediat Inflamm. 2012;2012:217580.Jin W, Wang H, Yan W, Xu L, Wang X, Zhao X, Yang X, Chen G, Ji Y. Disruption of Nrf2 enhances upregulation of nuclear factor-kappaB activity, proinflammatory cytokines, and intercellular adhesion molecule-1 in the brain after traumatic brain injury. Mediat Inflamm. 2008;2008:725174.Yu M, Li H, Liu Q, Liu F, Tang L, Li C, Yuan Y, Zhan Y, Xu W, Li W, et al. Nuclear factor p65 interacts with Keap1 to repress the Nrf2-ARE pathway. Cell Signal. 2011;23:883–92.Oller AR, Costa M, Oberdörster G. Carcinogenicity assessment of selected nickel compounds. Toxicol Appl Pharmacol. 1997;143:152–66.Grabbe S, Schwarz T. Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunol Today. 1998;19:37–44.Efremenko A, Campbell J, Dodd D, Oller A, Clewell H. Time-and concentration-dependent genomic responses of the rat airway to inhaled nickel subsulfide. Toxicol Appl Pharmacol. 2014;279:441–54.Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxid Redox Signal. 2014;21: 396–413.Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Investig. 2005;115:2656–64.Simard J-C, Vallieres F, De Liz R, Lavastre V, Girard D. Silver nanoparticles induce degradation of the endoplasmic reticulum stress sensor activating transcription factor-6 leading to activation of the NLRP-3 inflammasome. J Biol Chem. 2015;290(9):5926–39.Lu T-H, Tseng T-J, Su C-C, Tang F-C, Yen C-C, Liu Y-Y, Yang C-Y, Wu C-C, Chen K-L, Hung D-Z. Arsenic induces reactive oxygen species-caused neuronal cell apoptosis through JNK/ERK-mediated mitochondriadependent and GRP 78/CHOP-regulated pathways. Toxicol Lett. 2014;224: 130–40.Xu B, Shan M, Wang F, Deng Y, Liu W, Feng S, Yang T-Y, Xu Z-F. Endoplasmic reticulum stress signaling involvement in manganese-induced nerve cell damage in organotypic brain slice cultures. Toxicol Lett. 2013;222: 239–46.Le QG, Ishiwata-Kimata Y, Kohno K, Kimata Y. Cadmium impairs protein folding in the endoplasmic reticulum and induces the unfolded protein response. FEMS Yeast Res. 2016;16.Hiramatsu N, Kasai A, Du S, Takeda M, Hayakawa K, Okamura M, Yao J, Kitamura M. Rapid, transient induction of ER stress in the liver and kidney after acute exposure to heavy metal: evidence from transgenic sensor mice. FEBS Lett. 2007;581:2055–9.Guo H, Cui H, Peng X, Fang J, Zuo Z, Deng J, Wang X, Wu B, Chen K, Deng J. Nickel chloride (NiCl2) induces endoplasmic reticulum (ER) stress by activating UPR pathways in the kidney of broiler chickens. Oncotarget. 2016; 7:17508.Tamás MJ, Sharma SK, Ibstedt S, Jacobson T, Christen P. Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules. 2014;4:252–67.Ke Q, Davidson T, Kluz T, Oller A, Costa M. Fluorescent tracking of nickel ions in human cultured cells. Toxicol Appl Pharmacol. 2007;219:18–23.Kawanishi S, Oikawa S, Inoue S, Nishino K. Distinct mechanisms of oxidative DNA damage induced by carcinogenic nickel subsulfide and nickel oxides. Environ Health Perspect. 2002;110:789.Zhang K, Kaufman RJ. The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology. 2006;66:S102–9.Chang C-W, Chen Y-S, Tsay Y-G, Han C-L, Chen Y-J, Yang C-C, Hung K-F, Lin C-H, Huang T-Y, Kao S-Y. ROS-independent ER stress-mediated NRF2 activation promotes Warburg effect to maintain stemness-associated properties of cancer-initiating cells. Cell Death Dis. 2018;9:194.Mota SI, Costa RO, Ferreira IL, Santana I, Caldeira GL, Padovano C, Fonseca AC, Baldeiras I, Cunha C, Letra L, et al. Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer's disease. Biochim Biophys Acta. 1852;2015:1428–41.Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cellproliferation and transformation. Biochim Biophys Acta. 1991;1072:129–57.Hai T, Curran T. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci. 1991;88: 3720–4.Barchowsky A, O'Hara KA. Metal-induced cell signaling and gene activation in lung diseases. Free Radic Biol Med. 2003;34:1130–5.Salnikow K, Davidson T, Zhang Q, Chen LC, Su W, Costa M. The involvement of hypoxia-inducible transcription Factor-1-dependent pathway in nickel carcinogenesis. Cancer Res. 2003;63:3524–30.Ding J, Zhang X, Li J, Song L, Ouyang W, Zhang D, Xue C, Costa M, Meléndez JA, Huang C. Nickel compounds render anti-apoptotic effect to human bronchial epithelial Beas-2B cells by induction of cyclooxygenase-2 through an IKKβ/p65-dependent and IKKα-and p50-independent pathway. J Biol Chem. 2006;281:39022–32Sigel A, Sigel H, Sigel RKO: Nickel and Its Surprising Impact in Nature. Wiley; 2007.Aiba S, Manome H, Nakagawa S, Mollah ZU, Mizuashi M, Ohtani T, Yoshino Y, Tagami H. p38 mitogen-activated protein kinase and extracellular signalregulated kinases play distinct roles in the activation of dendritic cells by two representative haptens, NiCl2 and 2,4-dinitrochlorobenzene. J Invest Dermatol. 2003;120:390–9.Grösch S, Kaina B. Transcriptional activation of apurinic/apyrimidinic endonuclease (ape, Ref-1) by oxidative stress requires CREB. Biochem Biophys Res Commun. 1999;261:859–63.Mayr B, Montminy M. Transcriptional regulation by the phosphorylationdependent factor CREB. Nat Rev Mol Cell Biol. 2001;2:599.Kikuchi D, Tanimoto K, Nakayama K. CREB is activated by ER stress and modulates the unfolded protein response by regulating the expression of IRE1α and PERK. Biochem Biophys Res Commun. 2016;469:243–50.Ge Y, Bruno M, Haykal-Coates N, Wallace K, Andrews D, Swank A, Winnik W, Ross JA. Proteomic assessment of biochemical pathways that are critical to nickel-induced toxicity responses in human epithelial cells. PLoS One. 2016; 11:e0162522.Wang J, Maldonado MA. The ubiquitin-proteasome system and its role in inflammatory and autoimmune diseases. Cell Mol Immunol. 2006;3:255–61.Reinstein E. Immunologic aspects of protein degradation by the ubiquitinproteasome system. Isr Med Assoc J. 2004;6:420–4.Menéndez-Benito V, Verhoef LGGC, Masucci MG, Dantuma NP. Endoplasmic reticulum stress compromises the ubiquitin–proteasome system. Hum Mol Genet. 2005;14:2787–99.Hart LS, Cunningham JT, Datta T, Dey S, Tameire F, Lehman SL, Qiu B, Zhang H, Cerniglia G, Bi M, et al. ER stress–mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Invest. 2012;122: 4621–34.Gao P, Tchernyshyov I, Chang T-C, Lee Y-S, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, JTJN M. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 2009;458:762.Meyer N, Penn LZJNRC: Reflecting on 25 years with MYC. 2008, 8:976.Iritani BM, Eisenman RNJPotNAoS: c-Myc enhances protein synthesis and cell size during B lymphocyte development. 1999, 96:13180–13185.Chan JC, Hannan KM, Riddell K, Ng PY, Peck A, Lee RS, Hung S, Astle MV, Bywater M, Wall MJSS: AKT promotes rRNA synthesis and cooperates with c- MYC to stimulate ribosome biogenesis in cancer. Sci Signal 2011, 4:ra56-ra56.Zhu X, Huang L, Gong J, Shi C, Wang Z, Ye B, Xuan A, He X, Long D, Zhu X, et al. NF-κB pathway link with ER stress-induced autophagy and apoptosis in cervical tumor cells. Cell Death Discovery. 2017;3:17059.Liu G-H, Qu J, Shen X. NF-κB/p65 antagonizes Nrf2-ARE pathway by depriving CBP from Nrf2 and facilitating recruitment of HDAC3 to MafK. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2008;1783: 713–27.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf2102567https://bonga.unisimon.edu.co/bitstreams/4b7b73f3-8750-411a-aed6-c45289fdffeb/download4cf648b9cd788361950931d3648a0172MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/4bc9d5e6-0f4a-46e2-bf5a-11392b0d0e26/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/3d9dfd60-1b72-44b1-b699-0689706897f3/download733bec43a0bf5ade4d97db708e29b185MD53TEXTNuclear_factor_erythroid2.pdf.txtNuclear_factor_erythroid2.pdf.txtExtracted texttext/plain62848https://bonga.unisimon.edu.co/bitstreams/165f4e1f-dbe1-4017-a9c0-fedc2135fa04/downloadcba10108d5ea6e1a8b072a2037a71cbeMD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain64344https://bonga.unisimon.edu.co/bitstreams/06b48f73-4ceb-4d1a-80f7-01739c1cb7ae/downloaddc2035888c92f5a040521680e7709ce6MD56THUMBNAILNuclear_factor_erythroid2.pdf.jpgNuclear_factor_erythroid2.pdf.jpgGenerated Thumbnailimage/jpeg1735https://bonga.unisimon.edu.co/bitstreams/8edcba0c-e73d-4f17-9b45-c397c83d5bd8/download031f73149ae02deb31981d8e55b580eeMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5528https://bonga.unisimon.edu.co/bitstreams/938ef454-4a4d-404e-9b63-366e366f5df3/downloadb1491801a3acb8fec608dcd108061b3dMD5720.500.12442/4599oai:bonga.unisimon.edu.co:20.500.12442/45992024-08-14 21:54:46.424http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |