Novel Biomarkers of Diabetic Kidney Disease

Diabetic kidney disease (DKD) is a highly prevalent condition worldwide. It represents one of the most common complications arising from diabetes mellitus (DM) and is the leading cause of end-stage kidney disease (ESKD). Its development involves three fundamental components: the hemodynamic, metabol...

Full description

Autores:
Rico-Fontalvo, Jorge
Aroca-Martínez, Gustavo
Daza-Arnedo, Rodrigo
Cabrales, José
Rodríguez-Yánez, Tomás
Cardona-Blanco, María
Montejo-Hernández, Juan
Rodelo Barrios, Dairo
Patiño-Patiño, Jhonny
Osorio Rodríguez, Elber
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/12149
Acceso en línea:
https://hdl.handle.net/20.500.12442/12149
https://doi.org/10.3390/biom13040633
https://www.mdpi.com/2218-273X/13/4/633
Palabra clave:
Biomarkers
Diabetic kidney disease
Pathogenesis
Diabetes mellitus
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_8580dcf258965f6c8e8c2a2b6e671353
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/12149
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Novel Biomarkers of Diabetic Kidney Disease
title Novel Biomarkers of Diabetic Kidney Disease
spellingShingle Novel Biomarkers of Diabetic Kidney Disease
Biomarkers
Diabetic kidney disease
Pathogenesis
Diabetes mellitus
title_short Novel Biomarkers of Diabetic Kidney Disease
title_full Novel Biomarkers of Diabetic Kidney Disease
title_fullStr Novel Biomarkers of Diabetic Kidney Disease
title_full_unstemmed Novel Biomarkers of Diabetic Kidney Disease
title_sort Novel Biomarkers of Diabetic Kidney Disease
dc.creator.fl_str_mv Rico-Fontalvo, Jorge
Aroca-Martínez, Gustavo
Daza-Arnedo, Rodrigo
Cabrales, José
Rodríguez-Yánez, Tomás
Cardona-Blanco, María
Montejo-Hernández, Juan
Rodelo Barrios, Dairo
Patiño-Patiño, Jhonny
Osorio Rodríguez, Elber
dc.contributor.author.none.fl_str_mv Rico-Fontalvo, Jorge
Aroca-Martínez, Gustavo
Daza-Arnedo, Rodrigo
Cabrales, José
Rodríguez-Yánez, Tomás
Cardona-Blanco, María
Montejo-Hernández, Juan
Rodelo Barrios, Dairo
Patiño-Patiño, Jhonny
Osorio Rodríguez, Elber
dc.subject.eng.fl_str_mv Biomarkers
Diabetic kidney disease
Pathogenesis
Diabetes mellitus
topic Biomarkers
Diabetic kidney disease
Pathogenesis
Diabetes mellitus
description Diabetic kidney disease (DKD) is a highly prevalent condition worldwide. It represents one of the most common complications arising from diabetes mellitus (DM) and is the leading cause of end-stage kidney disease (ESKD). Its development involves three fundamental components: the hemodynamic, metabolic, and inflammatory axes. Clinically, persistent albuminuria in association with a progressive decline in glomerular filtration rate (GFR) defines this disease. However, as these alterations are not specific to DKD, there is a need to discuss novel biomarkers arising from its pathogenesis which may aid in the diagnosis, follow-up, therapeutic response, and prognosis of the disease.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-03-31T19:55:19Z
dc.date.available.none.fl_str_mv 2023-03-31T19:55:19Z
dc.date.issued.none.fl_str_mv 2023
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.citation.spa.fl_str_mv Rico-Fontalvo, J.; Aroca-Martínez, G.; Daza-Arnedo, R.; Cabrales, J.; Rodríguez-Yanez, T.; Cardona-Blanco, M.; Montejo- Hernández, J.; Rodelo Barrios, D.; Patiño-Patiño, J.; Osorio Rodríguez, E. Novel Biomarkers of Diabetic Kidney Disease. Biomolecules 2023, 13, 633. https://doi.org/10.3390/ biom13040633
dc.identifier.issn.none.fl_str_mv 2218273X
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/12149
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/biom13040633
dc.identifier.url.none.fl_str_mv https://www.mdpi.com/2218-273X/13/4/633
identifier_str_mv Rico-Fontalvo, J.; Aroca-Martínez, G.; Daza-Arnedo, R.; Cabrales, J.; Rodríguez-Yanez, T.; Cardona-Blanco, M.; Montejo- Hernández, J.; Rodelo Barrios, D.; Patiño-Patiño, J.; Osorio Rodríguez, E. Novel Biomarkers of Diabetic Kidney Disease. Biomolecules 2023, 13, 633. https://doi.org/10.3390/ biom13040633
2218273X
url https://hdl.handle.net/20.500.12442/12149
https://doi.org/10.3390/biom13040633
https://www.mdpi.com/2218-273X/13/4/633
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.spa.fl_str_mv MDPI
dc.source.eng.fl_str_mv Biomolecules
dc.source.none.fl_str_mv Vol. 13 No. 4 Año 2023
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/42f1cefb-4270-4e96-9360-10572b78ff30/download
https://bonga.unisimon.edu.co/bitstreams/f76177ac-9724-4840-af86-2a640088d086/download
https://bonga.unisimon.edu.co/bitstreams/a2d10e9f-1524-4255-b836-04652cee3e00/download
https://bonga.unisimon.edu.co/bitstreams/a5c66327-adae-404b-9b9e-ed6f28698362/download
https://bonga.unisimon.edu.co/bitstreams/e0d3658b-3b1d-4574-a284-53e4ba78232b/download
https://bonga.unisimon.edu.co/bitstreams/8835e855-ea11-4c6d-bea2-dbeae2f0382a/download
https://bonga.unisimon.edu.co/bitstreams/7f0a8dbb-06a1-4e00-89e0-717ae01fb094/download
bitstream.checksum.fl_str_mv 0d4854cbb68d11ae76477f3ab9dc1a2c
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
75ac437fb127ed7515c2859738cc1650
75ac437fb127ed7515c2859738cc1650
3d102e7c1d3b49c06f1568982c40b2c9
3d102e7c1d3b49c06f1568982c40b2c9
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076146293145600
spelling Rico-Fontalvo, Jorgedb7fe1a8-5530-4479-a566-077a0266f60dAroca-Martínez, Gustavoef65933f-3af8-4323-9a75-9d00de17e70aDaza-Arnedo, Rodrigo928bf6de-8e8b-40e4-9c34-3b53bd369dbfCabrales, José6e1ed240-4636-4399-acd4-de06db60021dRodríguez-Yánez, Tomás7375c35a-2451-4176-bccc-5ba650e40314Cardona-Blanco, María2225fd34-2773-4aaf-9a47-a4e047d81bbbMontejo-Hernández, Juand43e9eda-cbd3-4cf7-bdfa-8da1dcc3731eRodelo Barrios, Dairo8285085f-94d7-410a-bde4-eb81fcecfed6Patiño-Patiño, Jhonnyb49aec89-42af-444f-8a70-5e137a0cc759Osorio Rodríguez, Elber9a5d6602-c86a-43bd-9774-15004acd9b4f2023-03-31T19:55:19Z2023-03-31T19:55:19Z2023Rico-Fontalvo, J.; Aroca-Martínez, G.; Daza-Arnedo, R.; Cabrales, J.; Rodríguez-Yanez, T.; Cardona-Blanco, M.; Montejo- Hernández, J.; Rodelo Barrios, D.; Patiño-Patiño, J.; Osorio Rodríguez, E. Novel Biomarkers of Diabetic Kidney Disease. Biomolecules 2023, 13, 633. https://doi.org/10.3390/ biom130406332218273Xhttps://hdl.handle.net/20.500.12442/12149https://doi.org/10.3390/biom13040633https://www.mdpi.com/2218-273X/13/4/633Diabetic kidney disease (DKD) is a highly prevalent condition worldwide. It represents one of the most common complications arising from diabetes mellitus (DM) and is the leading cause of end-stage kidney disease (ESKD). Its development involves three fundamental components: the hemodynamic, metabolic, and inflammatory axes. Clinically, persistent albuminuria in association with a progressive decline in glomerular filtration rate (GFR) defines this disease. However, as these alterations are not specific to DKD, there is a need to discuss novel biomarkers arising from its pathogenesis which may aid in the diagnosis, follow-up, therapeutic response, and prognosis of the disease.pdfengMDPIAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2BiomoleculesVol. 13 No. 4 Año 2023BiomarkersDiabetic kidney diseasePathogenesisDiabetes mellitusNovel Biomarkers of Diabetic Kidney Diseaseinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Rico-Fontalvo, J.; Aroca, G.; Cabrales, J.; Daza-Arnedo, R.; Yánez-Rodríguez, T.; Martínez-Ávila, M.C.; Uparella-Gulfo, I.; Raad-Sarabia, M. Molecular mechanisms of diabetic kidney disease. Int. J. Mol. Sci. 2022, 23, 8668.Jung, C.Y.; Yoo, T.H. Pathophysiologic mechanisms and potential biomarkers in diabetic kidney disease. Diabetes Metab. J. 2022, 46, 181–197.Jorge, R.F.; Rodrigo, D.A.; Tomas, R.Y.; Maria Cristina, M.A.; Jose, C.; Maria Ximena, C.B.; Amilkar, A.-H.; Isabella, U.-G.; Oscar, V. Inflammation and diabetic kidney disease: New perspectives. J. Biomed. Res. Environ. Sci. 2022, 3, 779–786.Rico Fontalvo, J.E.; Vázquez Jiménez, L.C.; Rodríguez Yánez, T.; Daza Arnedo, R.; Raad, M.; Montejo Hernandez, J.D.; Abuabara- Franco, E. Diabetic kidney disease: Updating. Rev. Andal. Fac. Med. 2022, 55, 86–98.Peña, M.J.; Mischak, H.; Heerspink, H.J.L. Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease. Diabetologia 2016, 59, 1819–1831.Daza-Arnedo, R.; Rico-Fontalvo, J.E.; Pájaro-Galvis, N.; Leal-Martínez, V.; Abuabara-Franco, E.; Raad-Sarabia, M.; Montejo- Hernández, J.; Cardona-Blanco, M.; Cabrales-Juan, J.; Uparella-Gulfo, I.; et al. Dipeptidyl peptidase-4 inhibitors and diabetic kidney disease: A narrative review. Kidney Med. 2021, 3, 1065–1073.Kidney Disease: Improving Global Outcomes (KDIGO) DiabetesWork Group. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2022, 102 (Suppl. 5), S1–S127.Fontalvo, J.E.R. Clinical practice guidelines for diabetic kidney disease. Rev. Colomb. Nefrol. 2021, 8, e561.Looker, H.C.; Mauer, M.; Nelson, R.G. Role of kidney biopsies for biomarker discovery in diabetic kidney disease. Adv. Chronic Kidney Dis. 2018, 25, 192–201.Colhoun, H.M.; Marcovecchio, M.L. Biomarkers of diabetic kidney disease. Diabetologia 2018, 61, 996–1011.Pereira, P.R.; Carrageta, D.F.; Oliveira, P.F.; Rodrigues, A.; Alves, M.G.; Monteiro, M.P. Metabolomics as a tool for the early diagnosis and prognosis of diabetic kidney disease. Med. Res. Rev. 2022, 42, 1518–1544.Nowak, N.; Skupien, J.; Niewczas, M.A.; Yamanouchi, M.; Major, M.; Croall, S.; Smiles, A.; Warram, J.; Bonventre, J.; Krolewski, A. Increased plasma kidney injury molecule-1 suggests early progressive renal decline in non-proteinuric patients with type 1 diabetes. Kidney Int. 2016, 89, 459–467.Haase-Fielitz, A.; Bellomo, R.; Devarajan, P.; Story, D.; Matalanis, G.; Dragun, D.; Haase, M. Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery—A prospective cohort study. Crit. Care Med. 2009, 37, 553–560.Kaul, A.; Behera, M.R.; Rai, M.K.; Mishra, P.; Bhaduaria, D.S.; Yadav, S.; Agarwal, V.; Karoli, R.; Prasad, N.; Gupta, A.; et al. Neutrophil Gelatinase-associated Lipocalin: As a Predictor of Early Diabetic Nephropathy in Type 2 Diabetes Mellitus. Indian J. Nephrol. 2018, 28, 53–60.Barutta, F.; Bellini, S.; Canepa, S.; Durazzo, M.; Gruden, G. Novel biomarkers of diabetic kidney disease: Current status and potential clinical application. Acta Diabetol. 2021, 58, 819–830.DeFronzo, R.A.; Reeves, W.B.; Awad, A.S. Pathophysiology of diabetic kidney disease: Impact of SGLT2 inhibitors. Nat. Rev. Nephrol. 2021, 17, 319–334.Tye, S.C.; Denig, P.; Heerspink, H.J.L. Precision medicine approaches for diabetic kidney disease: Opportunities and challenges. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2021, 36 (Suppl. S2), 3–9.Gupta, A.; Singh, K.; Fatima, S.; Ambreen, S.; Zimmermann, S.; Younis, R.; Krishnan, S.; Rana, R.; Gadi, I.; Schwab, C.; et al. Neutrophil Extracellular Traps Promote NLRP3 Inflammasome Activation and Glomerular Endothelial Dysfunction in Diabetic Kidney Disease. Nutrients 2022, 14, 2965.Panduru, N.M.; Forsblom, C.; Saraheimo, M.; Thorn, L.; Bierhaus, A.; Humpert, P.M.; Groop, P.-H. Urinary liver-type fatty acid-binding protein and progression of diabetic nephropathy in type 1 diabetes. Diabetes Care 2013, 36, 2077–2083.Kalantarinia, K.; Awad, A.S.; Siragy, H.M. Urinary and renal interstitial concentrations of TNF-alpha increase prior to the rise in albuminuria in diabetic rats. Kidney Int. 2003, 64, 1208–1213.Pavkov, M.E.; Nelson, R.G.; Knowler,W.C.; Cheng, Y.; Krolewski, A.S.; Niewczas, M.A. Elevation of circulating TNF receptors 1 and 2 increases the risk of end-stage renal disease in American Indians with type 2 diabetes. Kidney Int. 2015, 87, 812–819.Sanchez, M.; Roussel, R.; Hadjadj, S.; Moutairou, A.; Marre, M.; Velho, G.; Mohammedi, K. Plasma concentrations of 8-hydroxy- 20-deoxyguanosine and risk of kidney disease and death in individuals with type 1 diabetes. Diabetologia 2018, 61, 977–984.Samsu, N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed Res. Int. 2021, 2021, 1497449.Rico Fontalvo, J.E. Diabetic kidney disease: From face to prevention, diagnosis and early intervention. Rev. Colomb. Nefrol. 2020, 7, 15–16.Vargas, J.M.L.; Fontalvo, J.E.R.; Rojas, E.M.; Barrios, G.A.C.; Rincón, A.R.; Gomez, A.M.; Martinez, S.; Bernal, L. Effect of pharmacological therapies for glycemic control in patients with type 2 diabetes mellitus on vascular outcomes. Rev. Colomb. Nefrol. 2020, 7, 44–59.Satirapoj, B. Tubulointerstitial Biomarkers for Diabetic Nephropathy. J. Diabetes Res. 2018, 2018, 2852398.Satirapoj, B.; Adler, S.G. Comprehensive approach to diabetic nephropathy. Kidney Res. Clin. Pract. 2014, 33, 121–131.Satirapoj, B.; Adler, S.G. Prevalence and Management of Diabetic Nephropathy in Western Countries. Kidney Dis. 2015, 1, 61–70.Satirapoj, B.; Nast, C.C.; Adler, S.G. Novel insights into the relationship between glomerular pathology and progressive kidney disease. Adv. Chronic Kidney Dis. 2012, 19, 93–100.Ostermann, M.; Zarbock, A.; Goldstein, S.; Kashani, K.; Macedo, E.; Murugan, R.; Bell, M.; Forni, L.; Guzzi, L.; Joannidis, M.; et al. Recommendations on Acute Kidney Injury Biomarkers from the Acute Disease Quality Initiative Consensus Conference: A Consensus Statement. JAMA Netw. Open 2020, 3, e2019209.Forsblom, C.; Moran, J.; Harjutsalo, V.; Loughman, T.; Wadén, J.; Tolonen, N.; Thorn, L.; Saraheimo, M.; Gordin, D.; Groop, P.H.; et al. Added value of soluble tumor necrosis factor-x receptor 1 as a biomarker of ESRD risk in patients with type 1 diabetes. Diabetes Care 2014, 37, 2334–2342.Andrésdóttir, G.; Jensen, M.L.; Carstensen, B.; Parving, H.H.; Hovind, P.; Hansen, T.W.; Rossing, P. Improved prognosis of diabetic nephropathy in type 1 diabetes. Kidney Int. 2015, 87, 417–426.Thipsawat, S. Early detection of diabetic nephropathy in patients with type 2 diabetes mellitus: A review of the literature. Diabetes Vasc. Dis. Res. 2021, 18, 14791641211058856.Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; Turk, D. Cysteine cathepsins: From structure, function, and regulation to new frontiers. Biochim. Biophys. Acta 2012, 1824, 68–88.Shi, G.P.; Sukhova, G.K.; Grubb, A.; Ducharme, A.; Rhode, L.H.; Lee, R.T.; Ridker, P.M.; Libby, P.; Chapman, H.A. Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J. Clin. Investig. 1999, 104, 1191–1197.Xu, Y.; Ding, Y.; Li, X.; Wu, X. Cystatin C is a disease-associated protein subject to multiple regulation. Immunol. Cell Biol. 2015, 93, 442–451.Dharnidharka, V.R.; Kwon, C.; Stevens, G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: A meta-analysis. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2002, 40, 221–226.Herget-Rosenthal, S.; Marggraf, G.; Hüsing, J.; Göring, F.; Pietruck, F.; Janssen, O.; Phillip, T.; Kribben, A. Early detection of acute renal failure by serum cystatin, C. Kidney Int. 2004, 66, 1115–1122.Ling, W.; Zhaohui, N.; Ben, H.; Leyi, G.; Jianping, L.; Huili, D.; Jiaqi, Q. Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography. Nephron Clin. Pract. 2008, 108, c176–c181.Kim, S.S.; Song, S.H.; Kim, I.J.; Jeon, Y.K.; Kim, B.H.; Kwak, I.S.; Lee, E.K.; Kim, Y.K. Urinary cystatin C and tubular proteinuria predict progression of diabetic nephropathy. Diabetes Care 2013, 36, 656–661.Jeon, Y.L.; Kim, M.H.; Lee, W.I.; Kang, S.Y. Cystatin C as an early marker of diabetic nephropathy in patients with type 2 diabetes. Clin. Lab. 2013, 59, 1221–1229.Abbasi, F.; Moosaie, F.; Khaloo, P.; Dehghani Firouzabadi, F.; Fatemi Abhari, S.M.; Atainia, B.; Ardeshir, M.; Nakhjavani, M.; Esteghamati, A. Neutrophil Gelatinase-Associated Lipocalin and Retinol-Binding Protein-4 as Biomarkers for Diabetic Kidney Disease. Kidney Blood Press. Res. 2020, 45, 222–232.Nauta, F.L.; Boertien,W.E.; Bakker, S.J.L.; van Goor, H.; van Oeveren,W.; de Jong, P.E.; Bilo, H.; Gansevoort, R. Glomerular and tubular damage markers are elevated in patients with diabetes. Diabetes Care 2011, 34, 975–981.de Carvalho, J.A.M.; Tatsch, E.; Hausen, B.S.; Bollick, Y.S.; Peres,W.; Duarte, M.M.M.F. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as indicators of tubular damage in normoalbuminuric patients with type 2 diabetes. Clin. Biochem. 2016, 49, 59–64.He, P.; Bai, M.; Hu, J.P.; Dong, C.; Sun, S.; Huang, C. Significance of Neutrophil Gelatinase-Associated Lipocalin as a Biomarker for the Diagnosis of Diabetic Kidney Disease: A Systematic Review and Meta-Analysis. Kidney Blood Press Res. 2020, 45, 497–509.Sabbisetti, V.S.; Waikar, S.S.; Antoine, D.J.; Smiles, A.; Wang, C.; Ravisankar, A.; Ito, K.; Sharma, S.; Ramadesikan, S.; Lee, M.; et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J. Am. Soc. Nephrol. 2014, 25, 2177–2186.de Zeeuw, D. The future of Diabetic Kidney Disease management: Reducing the unmet need. J. Nephrol. 2020, 33, 1163–1169.Rico-Fontalvo, J.; Daza-Arnedo, R.; Cardona-Blanco, M.X.; Leal-Martínez, V.; Abuabara-Franco, E.; Pajaro-Galvis, N.; Cabrales, J.; Correa, J.; Cueto, M.; Duran, A.; et al. SGLT2 Inhibitors and nephroprotection in diabetic kidney disease: From mechanisms of action to the latest evidence in the literature. J. Clin. Nephrol. 2020, 4, 44–55.Petrykiv, S.I.; Laverman, G.D.; de Zeeuw, D.; Heerspink, H.J.L. The albuminuria-lowering response to dapagliflozin is variable and reproducible among individual patients. Diabetes Obes. Metab. 2017, 19, 1363–1370.Cefalu, W.T.; Leiter, L.A.; Yoon, K.H.; Arias, P.; Niskanen, L.; Xie, J.; Balis, D.; Canovatchel,W.; Meininger, G. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52-week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 2013, 382, 941–950.Heerspink, H.J.L.; Perco, P.; Mulder, S.; Leierer, J.; Hansen, M.K.; Heinzel, A.; Mayer, G. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 2019, 62, 1154–1166.Sen, T.; Li, J.; Neuen, B.L.; Neal, B.; Arnott, C.; Parikh, C.R.; Coca, S.; Perkovic, V.; Mahaffey, K.; Yavin, Y.; et al. Effects of the SGLT2 inhibitor canagliflozin on plasma biomarkers TNFR-1, TNFR-2 and KIM-1 in the CANVAS trial. Diabetologia 2021, 64, 2147–2158.Bletsa, E.; Filippas-Dekouan, S.; Kostara, C.; Dafopoulos, P.; Dimou, A.; Pappa, E.; Chasapi, S.; Spyroulias, G.; Koutsovasilis, A.; Bairaktari, E.; et al. Effect of Dapagliflozin on Urine Metabolome in Patients with Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2021, 106, 1269–1283.Navarro-González, J.F.; Mora-Fernández, C.; Muros de Fuentes, M.; Chahin, J.; Méndez, M.L.; Gallego, E.; Macia, M.; Nieves del Castillo, A.; Getino, M.; Garcia, P.; et al. Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: The PRE-DIAN trial. J. Am. Soc. Nephrol. 2015, 26, 220–229.Rico, J.E.; Daza Anedo, R.; Raad Sarabia, M.; Pájaro Galvis, N.; Bello Espinosa, A.; Isabella Pérez Calvo, C.; Pomares Lara, A.; Mondol Almeida, Z.; Vergara Serpa, O.; Berrocal Martinez, C.; et al. Urinary proteome in diabetic kidney disease: State of the art: Proteoma urinario en la enfermedad renal diabética. Estado Arte Rev. Colomb. Nefrol. 2021, 8, e546.Lindhardt, M.; Persson, F.; Zürbig, P.; Stalmach, A.; Mischak, H.; de Zeeuw, D.; Lambers Heerspink, H.; Klein, R.; Orchard, T.; Porta, M.; et al. Urinary proteomics predict onset of microalbuminuria in normoalbuminuric type 2 diabetic patients, a sub-study of the DIRECT-Protect 2 study. Nephrol. Dial. Transplant. 2017, 32, 1866–1873.Tofte, N.; Lindhardt, M.; Adamova, K.; Bakker, S.J.L.; Beige, J.; Beulens, J.W.J.; Birkenfeld, A.; Currie, G.; Delles, C.; Dimons, I.; et al. Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): A prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes Endocrinol. 2020, 8, 301–312.Siwy, J.; Klein, T.; Rosler, M.; von Eynatten, M. Urinary Proteomics as a Tool to Identify Kidney Responders to Dipeptidyl Peptidase-4 Inhibition: A Hypothesis-Generating Analysis from the MARLINA-T2D Trial. Proteom. Clin. Appl. 2019, 13, e1800144.Coca, S.G.; Nadkarni, G.N.; Huang, Y.; Moledina, D.G.; Rao, V.; Zhang, J.; Ferket, B.; Crowley, S.; Fried, L.; Parik, C. Plasma Biomarkers and Kidney Function Decline in Early and Established Diabetic Kidney Disease. J. Am. Soc. Nephrol. 2017, 28, 2786–2793.Schrauben, S.J.; Shou, H.; Zhang, X.; Anderson, A.H.; Bonventre, J.V.; Chen, J.; Coca, S.; Furth, S.; Greenberg, J.; Gutierrez, O.; et al. Association of multiple plasma biomarker concentrations with progression of prevalent diabetic kidney disease: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. J. Am. Soc. Nephrol. 2021, 32, 115–126.Elmarakby, A.A.; Sullivan, J.C. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc. Ther. 2012, 30, 49–59.Hasegawa, G.; Nakano, K.; Sawada, M.; Uno, K.; Shibayama, Y.; Ienaga, K.; Kondo, M. Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy. Kidney Int. 1991, 40, 1007–1012.Bertani, T.; Abbate, M.; Zoja, C.; Corna, D.; Perico, N.; Ghezzi, P.; Remuzzi, G. Tumor necrosis factor induces glomerular damage in the rabbit. Am. J. Pathol. 1989, 134, 419–430.Krolewski, A.S.; Niewczas, M.A.; Skupien, J.; Gohda, T.; Smiles, A.; Eckfeldt, J.H.; Doria, A.; Warram, J. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care 2014, 37, 226–234.Gohda, T.; Niewczas, M.A.; Ficociello, L.H.; Walker, W.H.; Skupien, J.; Rosetti, F.; Cullere, X.; Johnson, A.; Crabtree, G.; Smiles, A.; et al. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J. Am. Soc. Nephrol. 2012, 23, 516–524.Looker, H.C.; Colombo, M.; Hess, S.; Brosnan, M.J.; Farran, B.; Dalton, R.N.; Wong, M.; Turner, C.; Palmer, C.; Nogoceke, E.; et al. Biomarkers of rapid chronic kidney disease progression in type 2 diabetes. Kidney Int. 2015, 88, 888–896.Lopes-Virella, M.F.; Baker, N.L.; Hunt, K.J.; Cleary, P.A.; Klein, R.; Virella, G. Baseline markers of inflammation are associated with progression to macroalbuminuria in type 1 diabetic subjects. Diabetes Care 2013, 36, 2317–2323.Skupien, J.; Warram, J.H.; Niewczas, M.A.; Gohda, T.; Malecki, M.; Mychaleckyj, J.C.; Galecki, A.; Krowleski, A. Synergism between circulating tumor necrosis factor receptor 2 and HbA(1c) in determining renal decline during 5-18 years of follow-up in patients with type 1 diabetes and proteinuria. Diabetes Care 2014, 37, 2601–2608.Gutiérrez, O.M.; Shlipak, M.G.; Katz, R.; Waikar, S.S.; Greenberg, J.H.; Schrauben, S.J.; Coca, S.; Parikh, C.; Vasan, R.; Feldman, H.; et al. Associations of plasma biomarkers of inflammation, fibrosis, and kidney tubular injury with progression of diabetic kidney disease: A cohort study. Am. J. Kidney Dis. 2022, 79, 849–857.e1.Wu, L.L.; Chiou, C.C.; Chang, P.Y.;Wu, J.T. Urinary 8-OHdG: A marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin. Chim. Acta Int. J. Clin. Chem. 2004, 339, 1–9.Xu, G.W.; Yao, Q.H.;Weng, Q.F.; Su, B.L.; Zhang, X.; Xiong, J.H. Study of urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in diabetic nephropathy patients. J. Pharm. Biomed. Anal. 2004, 36, 101–104.Serdar, M.; Sertoglu, E.; Uyanik, M.; Tapan, S.; Akin, K.; Bilgi, C.; Kurt, I. Comparison of 8-hydroxy-20-deoxyguanosine (8-OHdG) levels using mass spectrometer and urine albumin creatinine ratio as a predictor of development of diabetic nephropathy. Free Radic. Res. 2012, 46, 1291–1295.Yoon, S.Y.; Kim, J.S.; Jeong, K.H.; Kim, S.K. Acute Kidney Injury: Biomarker-Guided Diagnosis and Management. Medicina 2022, 58, 340.Schrezenmeier, E.V.; Barasch, J.; Budde, K.;Westhoff, T.; Schmidt-Ott, K.M. Biomarkers in acute kidney injury—Pathophysiological basis and clinical performance. Acta Physiol. 2017, 219, 554–572.Coca, S.G.; Yalavarthy, R.; Concato, J.; Parikh, C.R. Biomarkers for the diagnosis and risk stratification of acute kidney injury: A systematic review. Kidney Int. 2008, 73, 1008–1016.Bell, M.; Larsson, A.; Venge, P.; Bellomo, R.; Mårtensson, J. Assessment of cell-cycle arrest biomarkers to predict early and delayed acute kidney injury. Dis. Markers 2015, 2015, 158658.Hasson, D.; Menon, S.; Gist, K.M. Improving acute kidney injury diagnostic precision using biomarkers. Pract. Lab. Med. 2022, 30, e00272.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf793978https://bonga.unisimon.edu.co/bitstreams/42f1cefb-4270-4e96-9360-10572b78ff30/download0d4854cbb68d11ae76477f3ab9dc1a2cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/f76177ac-9724-4840-af86-2a640088d086/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/a2d10e9f-1524-4255-b836-04652cee3e00/download733bec43a0bf5ade4d97db708e29b185MD53TEXTbiomolecules-13-00633.pdf.txtbiomolecules-13-00633.pdf.txtExtracted texttext/plain68891https://bonga.unisimon.edu.co/bitstreams/a5c66327-adae-404b-9b9e-ed6f28698362/download75ac437fb127ed7515c2859738cc1650MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain68891https://bonga.unisimon.edu.co/bitstreams/e0d3658b-3b1d-4574-a284-53e4ba78232b/download75ac437fb127ed7515c2859738cc1650MD56THUMBNAILbiomolecules-13-00633.pdf.jpgbiomolecules-13-00633.pdf.jpgGenerated Thumbnailimage/jpeg5543https://bonga.unisimon.edu.co/bitstreams/8835e855-ea11-4c6d-bea2-dbeae2f0382a/download3d102e7c1d3b49c06f1568982c40b2c9MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5543https://bonga.unisimon.edu.co/bitstreams/7f0a8dbb-06a1-4e00-89e0-717ae01fb094/download3d102e7c1d3b49c06f1568982c40b2c9MD5720.500.12442/12149oai:bonga.unisimon.edu.co:20.500.12442/121492024-08-14 21:53:47.447http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u