Novel Biomarkers of Diabetic Kidney Disease
Diabetic kidney disease (DKD) is a highly prevalent condition worldwide. It represents one of the most common complications arising from diabetes mellitus (DM) and is the leading cause of end-stage kidney disease (ESKD). Its development involves three fundamental components: the hemodynamic, metabol...
- Autores:
-
Rico-Fontalvo, Jorge
Aroca-Martínez, Gustavo
Daza-Arnedo, Rodrigo
Cabrales, José
Rodríguez-Yánez, Tomás
Cardona-Blanco, María
Montejo-Hernández, Juan
Rodelo Barrios, Dairo
Patiño-Patiño, Jhonny
Osorio Rodríguez, Elber
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/12149
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/12149
https://doi.org/10.3390/biom13040633
https://www.mdpi.com/2218-273X/13/4/633
- Palabra clave:
- Biomarkers
Diabetic kidney disease
Pathogenesis
Diabetes mellitus
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_8580dcf258965f6c8e8c2a2b6e671353 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/12149 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Novel Biomarkers of Diabetic Kidney Disease |
title |
Novel Biomarkers of Diabetic Kidney Disease |
spellingShingle |
Novel Biomarkers of Diabetic Kidney Disease Biomarkers Diabetic kidney disease Pathogenesis Diabetes mellitus |
title_short |
Novel Biomarkers of Diabetic Kidney Disease |
title_full |
Novel Biomarkers of Diabetic Kidney Disease |
title_fullStr |
Novel Biomarkers of Diabetic Kidney Disease |
title_full_unstemmed |
Novel Biomarkers of Diabetic Kidney Disease |
title_sort |
Novel Biomarkers of Diabetic Kidney Disease |
dc.creator.fl_str_mv |
Rico-Fontalvo, Jorge Aroca-Martínez, Gustavo Daza-Arnedo, Rodrigo Cabrales, José Rodríguez-Yánez, Tomás Cardona-Blanco, María Montejo-Hernández, Juan Rodelo Barrios, Dairo Patiño-Patiño, Jhonny Osorio Rodríguez, Elber |
dc.contributor.author.none.fl_str_mv |
Rico-Fontalvo, Jorge Aroca-Martínez, Gustavo Daza-Arnedo, Rodrigo Cabrales, José Rodríguez-Yánez, Tomás Cardona-Blanco, María Montejo-Hernández, Juan Rodelo Barrios, Dairo Patiño-Patiño, Jhonny Osorio Rodríguez, Elber |
dc.subject.eng.fl_str_mv |
Biomarkers Diabetic kidney disease Pathogenesis Diabetes mellitus |
topic |
Biomarkers Diabetic kidney disease Pathogenesis Diabetes mellitus |
description |
Diabetic kidney disease (DKD) is a highly prevalent condition worldwide. It represents one of the most common complications arising from diabetes mellitus (DM) and is the leading cause of end-stage kidney disease (ESKD). Its development involves three fundamental components: the hemodynamic, metabolic, and inflammatory axes. Clinically, persistent albuminuria in association with a progressive decline in glomerular filtration rate (GFR) defines this disease. However, as these alterations are not specific to DKD, there is a need to discuss novel biomarkers arising from its pathogenesis which may aid in the diagnosis, follow-up, therapeutic response, and prognosis of the disease. |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-03-31T19:55:19Z |
dc.date.available.none.fl_str_mv |
2023-03-31T19:55:19Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.spa.spa.fl_str_mv |
Artículo científico |
dc.identifier.citation.spa.fl_str_mv |
Rico-Fontalvo, J.; Aroca-Martínez, G.; Daza-Arnedo, R.; Cabrales, J.; Rodríguez-Yanez, T.; Cardona-Blanco, M.; Montejo- Hernández, J.; Rodelo Barrios, D.; Patiño-Patiño, J.; Osorio Rodríguez, E. Novel Biomarkers of Diabetic Kidney Disease. Biomolecules 2023, 13, 633. https://doi.org/10.3390/ biom13040633 |
dc.identifier.issn.none.fl_str_mv |
2218273X |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/12149 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.3390/biom13040633 |
dc.identifier.url.none.fl_str_mv |
https://www.mdpi.com/2218-273X/13/4/633 |
identifier_str_mv |
Rico-Fontalvo, J.; Aroca-Martínez, G.; Daza-Arnedo, R.; Cabrales, J.; Rodríguez-Yanez, T.; Cardona-Blanco, M.; Montejo- Hernández, J.; Rodelo Barrios, D.; Patiño-Patiño, J.; Osorio Rodríguez, E. Novel Biomarkers of Diabetic Kidney Disease. Biomolecules 2023, 13, 633. https://doi.org/10.3390/ biom13040633 2218273X |
url |
https://hdl.handle.net/20.500.12442/12149 https://doi.org/10.3390/biom13040633 https://www.mdpi.com/2218-273X/13/4/633 |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
pdf |
dc.publisher.spa.fl_str_mv |
MDPI |
dc.source.eng.fl_str_mv |
Biomolecules |
dc.source.none.fl_str_mv |
Vol. 13 No. 4 Año 2023 |
institution |
Universidad Simón Bolívar |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/42f1cefb-4270-4e96-9360-10572b78ff30/download https://bonga.unisimon.edu.co/bitstreams/f76177ac-9724-4840-af86-2a640088d086/download https://bonga.unisimon.edu.co/bitstreams/a2d10e9f-1524-4255-b836-04652cee3e00/download https://bonga.unisimon.edu.co/bitstreams/a5c66327-adae-404b-9b9e-ed6f28698362/download https://bonga.unisimon.edu.co/bitstreams/e0d3658b-3b1d-4574-a284-53e4ba78232b/download https://bonga.unisimon.edu.co/bitstreams/8835e855-ea11-4c6d-bea2-dbeae2f0382a/download https://bonga.unisimon.edu.co/bitstreams/7f0a8dbb-06a1-4e00-89e0-717ae01fb094/download |
bitstream.checksum.fl_str_mv |
0d4854cbb68d11ae76477f3ab9dc1a2c 4460e5956bc1d1639be9ae6146a50347 733bec43a0bf5ade4d97db708e29b185 75ac437fb127ed7515c2859738cc1650 75ac437fb127ed7515c2859738cc1650 3d102e7c1d3b49c06f1568982c40b2c9 3d102e7c1d3b49c06f1568982c40b2c9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076146293145600 |
spelling |
Rico-Fontalvo, Jorgedb7fe1a8-5530-4479-a566-077a0266f60dAroca-Martínez, Gustavoef65933f-3af8-4323-9a75-9d00de17e70aDaza-Arnedo, Rodrigo928bf6de-8e8b-40e4-9c34-3b53bd369dbfCabrales, José6e1ed240-4636-4399-acd4-de06db60021dRodríguez-Yánez, Tomás7375c35a-2451-4176-bccc-5ba650e40314Cardona-Blanco, María2225fd34-2773-4aaf-9a47-a4e047d81bbbMontejo-Hernández, Juand43e9eda-cbd3-4cf7-bdfa-8da1dcc3731eRodelo Barrios, Dairo8285085f-94d7-410a-bde4-eb81fcecfed6Patiño-Patiño, Jhonnyb49aec89-42af-444f-8a70-5e137a0cc759Osorio Rodríguez, Elber9a5d6602-c86a-43bd-9774-15004acd9b4f2023-03-31T19:55:19Z2023-03-31T19:55:19Z2023Rico-Fontalvo, J.; Aroca-Martínez, G.; Daza-Arnedo, R.; Cabrales, J.; Rodríguez-Yanez, T.; Cardona-Blanco, M.; Montejo- Hernández, J.; Rodelo Barrios, D.; Patiño-Patiño, J.; Osorio Rodríguez, E. Novel Biomarkers of Diabetic Kidney Disease. Biomolecules 2023, 13, 633. https://doi.org/10.3390/ biom130406332218273Xhttps://hdl.handle.net/20.500.12442/12149https://doi.org/10.3390/biom13040633https://www.mdpi.com/2218-273X/13/4/633Diabetic kidney disease (DKD) is a highly prevalent condition worldwide. It represents one of the most common complications arising from diabetes mellitus (DM) and is the leading cause of end-stage kidney disease (ESKD). Its development involves three fundamental components: the hemodynamic, metabolic, and inflammatory axes. Clinically, persistent albuminuria in association with a progressive decline in glomerular filtration rate (GFR) defines this disease. However, as these alterations are not specific to DKD, there is a need to discuss novel biomarkers arising from its pathogenesis which may aid in the diagnosis, follow-up, therapeutic response, and prognosis of the disease.pdfengMDPIAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2BiomoleculesVol. 13 No. 4 Año 2023BiomarkersDiabetic kidney diseasePathogenesisDiabetes mellitusNovel Biomarkers of Diabetic Kidney Diseaseinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Rico-Fontalvo, J.; Aroca, G.; Cabrales, J.; Daza-Arnedo, R.; Yánez-Rodríguez, T.; Martínez-Ávila, M.C.; Uparella-Gulfo, I.; Raad-Sarabia, M. Molecular mechanisms of diabetic kidney disease. Int. J. Mol. Sci. 2022, 23, 8668.Jung, C.Y.; Yoo, T.H. Pathophysiologic mechanisms and potential biomarkers in diabetic kidney disease. Diabetes Metab. J. 2022, 46, 181–197.Jorge, R.F.; Rodrigo, D.A.; Tomas, R.Y.; Maria Cristina, M.A.; Jose, C.; Maria Ximena, C.B.; Amilkar, A.-H.; Isabella, U.-G.; Oscar, V. Inflammation and diabetic kidney disease: New perspectives. J. Biomed. Res. Environ. Sci. 2022, 3, 779–786.Rico Fontalvo, J.E.; Vázquez Jiménez, L.C.; Rodríguez Yánez, T.; Daza Arnedo, R.; Raad, M.; Montejo Hernandez, J.D.; Abuabara- Franco, E. Diabetic kidney disease: Updating. Rev. Andal. Fac. Med. 2022, 55, 86–98.Peña, M.J.; Mischak, H.; Heerspink, H.J.L. Proteomics for prediction of disease progression and response to therapy in diabetic kidney disease. Diabetologia 2016, 59, 1819–1831.Daza-Arnedo, R.; Rico-Fontalvo, J.E.; Pájaro-Galvis, N.; Leal-Martínez, V.; Abuabara-Franco, E.; Raad-Sarabia, M.; Montejo- Hernández, J.; Cardona-Blanco, M.; Cabrales-Juan, J.; Uparella-Gulfo, I.; et al. Dipeptidyl peptidase-4 inhibitors and diabetic kidney disease: A narrative review. Kidney Med. 2021, 3, 1065–1073.Kidney Disease: Improving Global Outcomes (KDIGO) DiabetesWork Group. KDIGO 2022 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2022, 102 (Suppl. 5), S1–S127.Fontalvo, J.E.R. Clinical practice guidelines for diabetic kidney disease. Rev. Colomb. Nefrol. 2021, 8, e561.Looker, H.C.; Mauer, M.; Nelson, R.G. Role of kidney biopsies for biomarker discovery in diabetic kidney disease. Adv. Chronic Kidney Dis. 2018, 25, 192–201.Colhoun, H.M.; Marcovecchio, M.L. Biomarkers of diabetic kidney disease. Diabetologia 2018, 61, 996–1011.Pereira, P.R.; Carrageta, D.F.; Oliveira, P.F.; Rodrigues, A.; Alves, M.G.; Monteiro, M.P. Metabolomics as a tool for the early diagnosis and prognosis of diabetic kidney disease. Med. Res. Rev. 2022, 42, 1518–1544.Nowak, N.; Skupien, J.; Niewczas, M.A.; Yamanouchi, M.; Major, M.; Croall, S.; Smiles, A.; Warram, J.; Bonventre, J.; Krolewski, A. Increased plasma kidney injury molecule-1 suggests early progressive renal decline in non-proteinuric patients with type 1 diabetes. Kidney Int. 2016, 89, 459–467.Haase-Fielitz, A.; Bellomo, R.; Devarajan, P.; Story, D.; Matalanis, G.; Dragun, D.; Haase, M. Novel and conventional serum biomarkers predicting acute kidney injury in adult cardiac surgery—A prospective cohort study. Crit. Care Med. 2009, 37, 553–560.Kaul, A.; Behera, M.R.; Rai, M.K.; Mishra, P.; Bhaduaria, D.S.; Yadav, S.; Agarwal, V.; Karoli, R.; Prasad, N.; Gupta, A.; et al. Neutrophil Gelatinase-associated Lipocalin: As a Predictor of Early Diabetic Nephropathy in Type 2 Diabetes Mellitus. Indian J. Nephrol. 2018, 28, 53–60.Barutta, F.; Bellini, S.; Canepa, S.; Durazzo, M.; Gruden, G. Novel biomarkers of diabetic kidney disease: Current status and potential clinical application. Acta Diabetol. 2021, 58, 819–830.DeFronzo, R.A.; Reeves, W.B.; Awad, A.S. Pathophysiology of diabetic kidney disease: Impact of SGLT2 inhibitors. Nat. Rev. Nephrol. 2021, 17, 319–334.Tye, S.C.; Denig, P.; Heerspink, H.J.L. Precision medicine approaches for diabetic kidney disease: Opportunities and challenges. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2021, 36 (Suppl. S2), 3–9.Gupta, A.; Singh, K.; Fatima, S.; Ambreen, S.; Zimmermann, S.; Younis, R.; Krishnan, S.; Rana, R.; Gadi, I.; Schwab, C.; et al. Neutrophil Extracellular Traps Promote NLRP3 Inflammasome Activation and Glomerular Endothelial Dysfunction in Diabetic Kidney Disease. Nutrients 2022, 14, 2965.Panduru, N.M.; Forsblom, C.; Saraheimo, M.; Thorn, L.; Bierhaus, A.; Humpert, P.M.; Groop, P.-H. Urinary liver-type fatty acid-binding protein and progression of diabetic nephropathy in type 1 diabetes. Diabetes Care 2013, 36, 2077–2083.Kalantarinia, K.; Awad, A.S.; Siragy, H.M. Urinary and renal interstitial concentrations of TNF-alpha increase prior to the rise in albuminuria in diabetic rats. Kidney Int. 2003, 64, 1208–1213.Pavkov, M.E.; Nelson, R.G.; Knowler,W.C.; Cheng, Y.; Krolewski, A.S.; Niewczas, M.A. Elevation of circulating TNF receptors 1 and 2 increases the risk of end-stage renal disease in American Indians with type 2 diabetes. Kidney Int. 2015, 87, 812–819.Sanchez, M.; Roussel, R.; Hadjadj, S.; Moutairou, A.; Marre, M.; Velho, G.; Mohammedi, K. Plasma concentrations of 8-hydroxy- 20-deoxyguanosine and risk of kidney disease and death in individuals with type 1 diabetes. Diabetologia 2018, 61, 977–984.Samsu, N. Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. BioMed Res. Int. 2021, 2021, 1497449.Rico Fontalvo, J.E. Diabetic kidney disease: From face to prevention, diagnosis and early intervention. Rev. Colomb. Nefrol. 2020, 7, 15–16.Vargas, J.M.L.; Fontalvo, J.E.R.; Rojas, E.M.; Barrios, G.A.C.; Rincón, A.R.; Gomez, A.M.; Martinez, S.; Bernal, L. Effect of pharmacological therapies for glycemic control in patients with type 2 diabetes mellitus on vascular outcomes. Rev. Colomb. Nefrol. 2020, 7, 44–59.Satirapoj, B. Tubulointerstitial Biomarkers for Diabetic Nephropathy. J. Diabetes Res. 2018, 2018, 2852398.Satirapoj, B.; Adler, S.G. Comprehensive approach to diabetic nephropathy. Kidney Res. Clin. Pract. 2014, 33, 121–131.Satirapoj, B.; Adler, S.G. Prevalence and Management of Diabetic Nephropathy in Western Countries. Kidney Dis. 2015, 1, 61–70.Satirapoj, B.; Nast, C.C.; Adler, S.G. Novel insights into the relationship between glomerular pathology and progressive kidney disease. Adv. Chronic Kidney Dis. 2012, 19, 93–100.Ostermann, M.; Zarbock, A.; Goldstein, S.; Kashani, K.; Macedo, E.; Murugan, R.; Bell, M.; Forni, L.; Guzzi, L.; Joannidis, M.; et al. Recommendations on Acute Kidney Injury Biomarkers from the Acute Disease Quality Initiative Consensus Conference: A Consensus Statement. JAMA Netw. Open 2020, 3, e2019209.Forsblom, C.; Moran, J.; Harjutsalo, V.; Loughman, T.; Wadén, J.; Tolonen, N.; Thorn, L.; Saraheimo, M.; Gordin, D.; Groop, P.H.; et al. Added value of soluble tumor necrosis factor-x receptor 1 as a biomarker of ESRD risk in patients with type 1 diabetes. Diabetes Care 2014, 37, 2334–2342.Andrésdóttir, G.; Jensen, M.L.; Carstensen, B.; Parving, H.H.; Hovind, P.; Hansen, T.W.; Rossing, P. Improved prognosis of diabetic nephropathy in type 1 diabetes. Kidney Int. 2015, 87, 417–426.Thipsawat, S. Early detection of diabetic nephropathy in patients with type 2 diabetes mellitus: A review of the literature. Diabetes Vasc. Dis. Res. 2021, 18, 14791641211058856.Turk, V.; Stoka, V.; Vasiljeva, O.; Renko, M.; Sun, T.; Turk, B.; Turk, D. Cysteine cathepsins: From structure, function, and regulation to new frontiers. Biochim. Biophys. Acta 2012, 1824, 68–88.Shi, G.P.; Sukhova, G.K.; Grubb, A.; Ducharme, A.; Rhode, L.H.; Lee, R.T.; Ridker, P.M.; Libby, P.; Chapman, H.A. Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J. Clin. Investig. 1999, 104, 1191–1197.Xu, Y.; Ding, Y.; Li, X.; Wu, X. Cystatin C is a disease-associated protein subject to multiple regulation. Immunol. Cell Biol. 2015, 93, 442–451.Dharnidharka, V.R.; Kwon, C.; Stevens, G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: A meta-analysis. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2002, 40, 221–226.Herget-Rosenthal, S.; Marggraf, G.; Hüsing, J.; Göring, F.; Pietruck, F.; Janssen, O.; Phillip, T.; Kribben, A. Early detection of acute renal failure by serum cystatin, C. Kidney Int. 2004, 66, 1115–1122.Ling, W.; Zhaohui, N.; Ben, H.; Leyi, G.; Jianping, L.; Huili, D.; Jiaqi, Q. Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography. Nephron Clin. Pract. 2008, 108, c176–c181.Kim, S.S.; Song, S.H.; Kim, I.J.; Jeon, Y.K.; Kim, B.H.; Kwak, I.S.; Lee, E.K.; Kim, Y.K. Urinary cystatin C and tubular proteinuria predict progression of diabetic nephropathy. Diabetes Care 2013, 36, 656–661.Jeon, Y.L.; Kim, M.H.; Lee, W.I.; Kang, S.Y. Cystatin C as an early marker of diabetic nephropathy in patients with type 2 diabetes. Clin. Lab. 2013, 59, 1221–1229.Abbasi, F.; Moosaie, F.; Khaloo, P.; Dehghani Firouzabadi, F.; Fatemi Abhari, S.M.; Atainia, B.; Ardeshir, M.; Nakhjavani, M.; Esteghamati, A. Neutrophil Gelatinase-Associated Lipocalin and Retinol-Binding Protein-4 as Biomarkers for Diabetic Kidney Disease. Kidney Blood Press. Res. 2020, 45, 222–232.Nauta, F.L.; Boertien,W.E.; Bakker, S.J.L.; van Goor, H.; van Oeveren,W.; de Jong, P.E.; Bilo, H.; Gansevoort, R. Glomerular and tubular damage markers are elevated in patients with diabetes. Diabetes Care 2011, 34, 975–981.de Carvalho, J.A.M.; Tatsch, E.; Hausen, B.S.; Bollick, Y.S.; Peres,W.; Duarte, M.M.M.F. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as indicators of tubular damage in normoalbuminuric patients with type 2 diabetes. Clin. Biochem. 2016, 49, 59–64.He, P.; Bai, M.; Hu, J.P.; Dong, C.; Sun, S.; Huang, C. Significance of Neutrophil Gelatinase-Associated Lipocalin as a Biomarker for the Diagnosis of Diabetic Kidney Disease: A Systematic Review and Meta-Analysis. Kidney Blood Press Res. 2020, 45, 497–509.Sabbisetti, V.S.; Waikar, S.S.; Antoine, D.J.; Smiles, A.; Wang, C.; Ravisankar, A.; Ito, K.; Sharma, S.; Ramadesikan, S.; Lee, M.; et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J. Am. Soc. Nephrol. 2014, 25, 2177–2186.de Zeeuw, D. The future of Diabetic Kidney Disease management: Reducing the unmet need. J. Nephrol. 2020, 33, 1163–1169.Rico-Fontalvo, J.; Daza-Arnedo, R.; Cardona-Blanco, M.X.; Leal-Martínez, V.; Abuabara-Franco, E.; Pajaro-Galvis, N.; Cabrales, J.; Correa, J.; Cueto, M.; Duran, A.; et al. SGLT2 Inhibitors and nephroprotection in diabetic kidney disease: From mechanisms of action to the latest evidence in the literature. J. Clin. Nephrol. 2020, 4, 44–55.Petrykiv, S.I.; Laverman, G.D.; de Zeeuw, D.; Heerspink, H.J.L. The albuminuria-lowering response to dapagliflozin is variable and reproducible among individual patients. Diabetes Obes. Metab. 2017, 19, 1363–1370.Cefalu, W.T.; Leiter, L.A.; Yoon, K.H.; Arias, P.; Niskanen, L.; Xie, J.; Balis, D.; Canovatchel,W.; Meininger, G. Efficacy and safety of canagliflozin versus glimepiride in patients with type 2 diabetes inadequately controlled with metformin (CANTATA-SU): 52-week results from a randomised, double-blind, phase 3 non-inferiority trial. Lancet 2013, 382, 941–950.Heerspink, H.J.L.; Perco, P.; Mulder, S.; Leierer, J.; Hansen, M.K.; Heinzel, A.; Mayer, G. Canagliflozin reduces inflammation and fibrosis biomarkers: A potential mechanism of action for beneficial effects of SGLT2 inhibitors in diabetic kidney disease. Diabetologia 2019, 62, 1154–1166.Sen, T.; Li, J.; Neuen, B.L.; Neal, B.; Arnott, C.; Parikh, C.R.; Coca, S.; Perkovic, V.; Mahaffey, K.; Yavin, Y.; et al. Effects of the SGLT2 inhibitor canagliflozin on plasma biomarkers TNFR-1, TNFR-2 and KIM-1 in the CANVAS trial. Diabetologia 2021, 64, 2147–2158.Bletsa, E.; Filippas-Dekouan, S.; Kostara, C.; Dafopoulos, P.; Dimou, A.; Pappa, E.; Chasapi, S.; Spyroulias, G.; Koutsovasilis, A.; Bairaktari, E.; et al. Effect of Dapagliflozin on Urine Metabolome in Patients with Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2021, 106, 1269–1283.Navarro-González, J.F.; Mora-Fernández, C.; Muros de Fuentes, M.; Chahin, J.; Méndez, M.L.; Gallego, E.; Macia, M.; Nieves del Castillo, A.; Getino, M.; Garcia, P.; et al. Effect of pentoxifylline on renal function and urinary albumin excretion in patients with diabetic kidney disease: The PRE-DIAN trial. J. Am. Soc. Nephrol. 2015, 26, 220–229.Rico, J.E.; Daza Anedo, R.; Raad Sarabia, M.; Pájaro Galvis, N.; Bello Espinosa, A.; Isabella Pérez Calvo, C.; Pomares Lara, A.; Mondol Almeida, Z.; Vergara Serpa, O.; Berrocal Martinez, C.; et al. Urinary proteome in diabetic kidney disease: State of the art: Proteoma urinario en la enfermedad renal diabética. Estado Arte Rev. Colomb. Nefrol. 2021, 8, e546.Lindhardt, M.; Persson, F.; Zürbig, P.; Stalmach, A.; Mischak, H.; de Zeeuw, D.; Lambers Heerspink, H.; Klein, R.; Orchard, T.; Porta, M.; et al. Urinary proteomics predict onset of microalbuminuria in normoalbuminuric type 2 diabetic patients, a sub-study of the DIRECT-Protect 2 study. Nephrol. Dial. Transplant. 2017, 32, 1866–1873.Tofte, N.; Lindhardt, M.; Adamova, K.; Bakker, S.J.L.; Beige, J.; Beulens, J.W.J.; Birkenfeld, A.; Currie, G.; Delles, C.; Dimons, I.; et al. Early detection of diabetic kidney disease by urinary proteomics and subsequent intervention with spironolactone to delay progression (PRIORITY): A prospective observational study and embedded randomised placebo-controlled trial. Lancet Diabetes Endocrinol. 2020, 8, 301–312.Siwy, J.; Klein, T.; Rosler, M.; von Eynatten, M. Urinary Proteomics as a Tool to Identify Kidney Responders to Dipeptidyl Peptidase-4 Inhibition: A Hypothesis-Generating Analysis from the MARLINA-T2D Trial. Proteom. Clin. Appl. 2019, 13, e1800144.Coca, S.G.; Nadkarni, G.N.; Huang, Y.; Moledina, D.G.; Rao, V.; Zhang, J.; Ferket, B.; Crowley, S.; Fried, L.; Parik, C. Plasma Biomarkers and Kidney Function Decline in Early and Established Diabetic Kidney Disease. J. Am. Soc. Nephrol. 2017, 28, 2786–2793.Schrauben, S.J.; Shou, H.; Zhang, X.; Anderson, A.H.; Bonventre, J.V.; Chen, J.; Coca, S.; Furth, S.; Greenberg, J.; Gutierrez, O.; et al. Association of multiple plasma biomarker concentrations with progression of prevalent diabetic kidney disease: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. J. Am. Soc. Nephrol. 2021, 32, 115–126.Elmarakby, A.A.; Sullivan, J.C. Relationship between oxidative stress and inflammatory cytokines in diabetic nephropathy. Cardiovasc. Ther. 2012, 30, 49–59.Hasegawa, G.; Nakano, K.; Sawada, M.; Uno, K.; Shibayama, Y.; Ienaga, K.; Kondo, M. Possible role of tumor necrosis factor and interleukin-1 in the development of diabetic nephropathy. Kidney Int. 1991, 40, 1007–1012.Bertani, T.; Abbate, M.; Zoja, C.; Corna, D.; Perico, N.; Ghezzi, P.; Remuzzi, G. Tumor necrosis factor induces glomerular damage in the rabbit. Am. J. Pathol. 1989, 134, 419–430.Krolewski, A.S.; Niewczas, M.A.; Skupien, J.; Gohda, T.; Smiles, A.; Eckfeldt, J.H.; Doria, A.; Warram, J. Early progressive renal decline precedes the onset of microalbuminuria and its progression to macroalbuminuria. Diabetes Care 2014, 37, 226–234.Gohda, T.; Niewczas, M.A.; Ficociello, L.H.; Walker, W.H.; Skupien, J.; Rosetti, F.; Cullere, X.; Johnson, A.; Crabtree, G.; Smiles, A.; et al. Circulating TNF receptors 1 and 2 predict stage 3 CKD in type 1 diabetes. J. Am. Soc. Nephrol. 2012, 23, 516–524.Looker, H.C.; Colombo, M.; Hess, S.; Brosnan, M.J.; Farran, B.; Dalton, R.N.; Wong, M.; Turner, C.; Palmer, C.; Nogoceke, E.; et al. Biomarkers of rapid chronic kidney disease progression in type 2 diabetes. Kidney Int. 2015, 88, 888–896.Lopes-Virella, M.F.; Baker, N.L.; Hunt, K.J.; Cleary, P.A.; Klein, R.; Virella, G. Baseline markers of inflammation are associated with progression to macroalbuminuria in type 1 diabetic subjects. Diabetes Care 2013, 36, 2317–2323.Skupien, J.; Warram, J.H.; Niewczas, M.A.; Gohda, T.; Malecki, M.; Mychaleckyj, J.C.; Galecki, A.; Krowleski, A. Synergism between circulating tumor necrosis factor receptor 2 and HbA(1c) in determining renal decline during 5-18 years of follow-up in patients with type 1 diabetes and proteinuria. Diabetes Care 2014, 37, 2601–2608.Gutiérrez, O.M.; Shlipak, M.G.; Katz, R.; Waikar, S.S.; Greenberg, J.H.; Schrauben, S.J.; Coca, S.; Parikh, C.; Vasan, R.; Feldman, H.; et al. Associations of plasma biomarkers of inflammation, fibrosis, and kidney tubular injury with progression of diabetic kidney disease: A cohort study. Am. J. Kidney Dis. 2022, 79, 849–857.e1.Wu, L.L.; Chiou, C.C.; Chang, P.Y.;Wu, J.T. Urinary 8-OHdG: A marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin. Chim. Acta Int. J. Clin. Chem. 2004, 339, 1–9.Xu, G.W.; Yao, Q.H.;Weng, Q.F.; Su, B.L.; Zhang, X.; Xiong, J.H. Study of urinary 8-hydroxydeoxyguanosine as a biomarker of oxidative DNA damage in diabetic nephropathy patients. J. Pharm. Biomed. Anal. 2004, 36, 101–104.Serdar, M.; Sertoglu, E.; Uyanik, M.; Tapan, S.; Akin, K.; Bilgi, C.; Kurt, I. Comparison of 8-hydroxy-20-deoxyguanosine (8-OHdG) levels using mass spectrometer and urine albumin creatinine ratio as a predictor of development of diabetic nephropathy. Free Radic. Res. 2012, 46, 1291–1295.Yoon, S.Y.; Kim, J.S.; Jeong, K.H.; Kim, S.K. Acute Kidney Injury: Biomarker-Guided Diagnosis and Management. Medicina 2022, 58, 340.Schrezenmeier, E.V.; Barasch, J.; Budde, K.;Westhoff, T.; Schmidt-Ott, K.M. Biomarkers in acute kidney injury—Pathophysiological basis and clinical performance. Acta Physiol. 2017, 219, 554–572.Coca, S.G.; Yalavarthy, R.; Concato, J.; Parikh, C.R. Biomarkers for the diagnosis and risk stratification of acute kidney injury: A systematic review. Kidney Int. 2008, 73, 1008–1016.Bell, M.; Larsson, A.; Venge, P.; Bellomo, R.; Mårtensson, J. Assessment of cell-cycle arrest biomarkers to predict early and delayed acute kidney injury. Dis. Markers 2015, 2015, 158658.Hasson, D.; Menon, S.; Gist, K.M. Improving acute kidney injury diagnostic precision using biomarkers. Pract. Lab. Med. 2022, 30, e00272.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf793978https://bonga.unisimon.edu.co/bitstreams/42f1cefb-4270-4e96-9360-10572b78ff30/download0d4854cbb68d11ae76477f3ab9dc1a2cMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/f76177ac-9724-4840-af86-2a640088d086/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/a2d10e9f-1524-4255-b836-04652cee3e00/download733bec43a0bf5ade4d97db708e29b185MD53TEXTbiomolecules-13-00633.pdf.txtbiomolecules-13-00633.pdf.txtExtracted texttext/plain68891https://bonga.unisimon.edu.co/bitstreams/a5c66327-adae-404b-9b9e-ed6f28698362/download75ac437fb127ed7515c2859738cc1650MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain68891https://bonga.unisimon.edu.co/bitstreams/e0d3658b-3b1d-4574-a284-53e4ba78232b/download75ac437fb127ed7515c2859738cc1650MD56THUMBNAILbiomolecules-13-00633.pdf.jpgbiomolecules-13-00633.pdf.jpgGenerated Thumbnailimage/jpeg5543https://bonga.unisimon.edu.co/bitstreams/8835e855-ea11-4c6d-bea2-dbeae2f0382a/download3d102e7c1d3b49c06f1568982c40b2c9MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5543https://bonga.unisimon.edu.co/bitstreams/7f0a8dbb-06a1-4e00-89e0-717ae01fb094/download3d102e7c1d3b49c06f1568982c40b2c9MD5720.500.12442/12149oai:bonga.unisimon.edu.co:20.500.12442/121492024-08-14 21:53:47.447http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |