Variations for Some Painlevé Equations
This paper rst discusses irreducibility of a Painlev e equation P. We explain how the Painlev e property is helpful for the computation of special classical and algebraic solutions. As in a paper of Morales-Ruiz we associate an autonomous Hamiltonian H to a Painlev e equation P. Complete integrabili...
- Autores:
-
Acosta-Humañez, Primitivo B.
Van Der Put, Marius
Top, Jaap
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/4330
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/4330
- Palabra clave:
- Hamiltonian systems
Variational equations
Painlevé equations
differential Galois groups
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_81e6a03f15b15ef4bb72716b62fd476e |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/4330 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Variations for Some Painlevé Equations |
title |
Variations for Some Painlevé Equations |
spellingShingle |
Variations for Some Painlevé Equations Hamiltonian systems Variational equations Painlevé equations differential Galois groups |
title_short |
Variations for Some Painlevé Equations |
title_full |
Variations for Some Painlevé Equations |
title_fullStr |
Variations for Some Painlevé Equations |
title_full_unstemmed |
Variations for Some Painlevé Equations |
title_sort |
Variations for Some Painlevé Equations |
dc.creator.fl_str_mv |
Acosta-Humañez, Primitivo B. Van Der Put, Marius Top, Jaap |
dc.contributor.author.none.fl_str_mv |
Acosta-Humañez, Primitivo B. Van Der Put, Marius Top, Jaap |
dc.subject.eng.fl_str_mv |
Hamiltonian systems Variational equations Painlevé equations differential Galois groups |
topic |
Hamiltonian systems Variational equations Painlevé equations differential Galois groups |
description |
This paper rst discusses irreducibility of a Painlev e equation P. We explain how the Painlev e property is helpful for the computation of special classical and algebraic solutions. As in a paper of Morales-Ruiz we associate an autonomous Hamiltonian H to a Painlev e equation P. Complete integrability of H is shown to imply that all solutions to P are classical (which includes algebraic), so in particular P is solvable by \quadratures". Next, we show that the variational equation of P at a given algebraic solution coincides with the normal variational equation of H at the corresponding solution. Finally, we test the Morales-Ramis theorem in all cases P2 to P5 where algebraic solutions are present, by showing how our results lead to a quick computation of the component of the identity of the di erential Galois group for the rst two variational equations. As expected there are no cases where this group is commutative. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-12T20:08:30Z |
dc.date.available.none.fl_str_mv |
2019-11-12T20:08:30Z |
dc.date.issued.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
18150659 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/4330 |
identifier_str_mv |
18150659 |
url |
https://hdl.handle.net/20.500.12442/4330 |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_14cb |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_14cb |
dc.publisher.eng.fl_str_mv |
SIGMA |
dc.source.eng.fl_str_mv |
Symmetry, Integrability and Geometry: Methods and Applications |
dc.source.spa.fl_str_mv |
Vol. 15, (2019) |
institution |
Universidad Simón Bolívar |
dc.source.uri.eng.fl_str_mv |
https://www.emis.de/journals/SIGMA/2019/088/sigma19-088.pdf |
dc.source.bibliographicCitation.eng.fl_str_mv |
Acosta-Humánez P.B., Nonautonomous Hamiltonian systems and Morales-Ramis theory. I. The case x = f(x; t), SIAM J. Appl. Dyn. Syst. 8 (2009), 279{297, arXiv:0808.3028. Acosta-Humánez P.B., van der Put M., Top J., Isomonodromy for the degenerate fth Painlevé equation, SIGMA 13 (2017), 029, 14 pages, arXiv:1612.03674. Casale G.,Weil J.A., Galoisian methods for testing irreducibility of order two nonlinear differential equations, Paci c J. Math. 297 (2018), 299{337, arXiv:1504.08134. Clarkson P.A., Painlevé equations - nonlinear special functions, slides presented during the IMA Summer Program Special Functions in the Digital Age, Minneapolis, July 22 - August 2, 2002, available at http: //www.math.rug.nl/~top/Clarkson.pdf. Clarkson P.A., Special polynomials associated with rational solutions of the fth Painlevé equation, J. Com- put. Appl. Math. 178 (2005), 111{129. Clarkson P.A., Painlevé equations - nonlinear special functions, in Orthogonal Polynomials and Special Functions, Lecture Notes in Math., Vol. 1883, Editors F. Marcellán, W. Van Assche, Springer, Berlin, 2006, 331{411. Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Studies in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin, 2002. Horozov E., Stoyanova T., Non-integrability of some Painlevé VI-equations and dilogarithms, Regul. Chaotic Dyn. 12 (2007), 622{629. Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407{448. Lukashevich N.A., On the theory of Painlevé's third equation, Differ. Uravn. 3 (1967), 1913{1923. Lukashevich N.A., The solutions of Painlevé's fth equation, Differ. Uravn. 4 (1968), 1413{1420. Matsuda M., First-order algebraic differential equations. A differential algebraic approach, Lecture Notes in Math., Vol. 804, Springer, Berlin, 1980. Morales-Ruiz J.J., A remark about the Painlevé transcendents, in Théories asymptotiques et équations de Painlevé, Sémin. Congr., Vol. 14, Soc. Math. France, Paris, 2006, 229-235. Morales-Ruiz J.J., Ramis J.P., Galoisian obstructions to integrability of Hamiltonian systems, Methods Appl. Anal. 8 (2001), 33{96. Morales-Ruiz J.J., Ramis J.P., Simo C., Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. École Norm. Sup. (4) 40 (2007), 845-884. Muntingh G., van der Put M., Order one equations with the Painlevé property, Indag. Math. (N.S.) 18 (2007), 83-95, arXiv:1202.4633. Nagloo J., Pillay A., On algebraic relations between solutions of a generic Painlevé equation, J. Reine Angew. Math. 726 (2017), 1{27, arXiv:1112.2916. Ngo Chau L.X., Nguyen K.A., van der Put M., Top J., Equivalence of differential equations of order one, J. Symbolic Comput. 71 (2015), 47{59, arXiv:1303.4960. Ohyama Y., Kawamuko H., Sakai H., Okamoto K., Studies on the Painlevé equations. V. Third Painlevé equations of special type PIII(D7) and PIII(D8), J. Math. Sci. Univ. Tokyo 13 (2006), 145{204. Ohyama Y., Okumura S., R. Fuchs' problem of the Painlevé equations from the rst to the fth, in Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., Vol. 593, Amer. Math. Soc., Providence, RI, 2013, 163{178, arXiv:math.CA/0512243. Stoyanova T., Non-integrability of Painlevé VI equations in the Liouville sense, Nonlinearity 22 (2009), 2201{2230. Stoyanova T., Non-integrability of Painlevé V equations in the Liouville sense and Stokes phenomenon, Adv. Pure Math. 1 (2011), 170{183. Stoyanova T., A note on the R. Fuchs's problem for the Painlevé equations, arXiv:1204.0157. Stoyanova T., Non-integrability of the fourth Painlevé equation in the Liouville-Arnold sense, Nonlinearity 27 (2014), 1029-1044. Stoyanova T., Christov O., Non-integrability of the second Painlevé equation as a Hamiltonian system, C. R. Acad. Bulgare Sci. 60 (2007), 13{18, arXiv:1103.2443. Umemura H., On the irreducibility of the rst differential equation of Painlevé, in Algebraic Geometry and Commutative Algebra, Vol. II, Kinokuniya, Tokyo, 1988, 771-789. Umemura H., Second proof of the irreducibility of the rst differential equation of Painlevé, Nagoya Math. J. 117 (1990), 125{171. Umemura H., Birational automorphism groups and differential equations, Nagoya Math. J. 119 (1990), 1{80. Umemura H., Watanabe H., Solutions of the second and fourth Painlevé equations. I, Nagoya Math. J. 148 (1997), 151{198. van der Put M., Saito M.H., Moduli spaces for linear differential equations and the Painlevé equations, Ann. Inst. Fourier (Grenoble) 59 (2009), 2611{2667, arXiv:0902.1702. van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003. Z_ ol ádek H., Filipuk G., Painlevé equations, elliptic integrals and elementary functions, J. Differential Equa- tions 258 (2015), 1303{1355. |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/9f9c9d84-1d5f-4ff7-a531-f12eaf9eb505/download https://bonga.unisimon.edu.co/bitstreams/79cf742b-23a1-4953-b508-e41ae47ae841/download https://bonga.unisimon.edu.co/bitstreams/1733f6fa-e30d-46e7-893c-a1882066d71b/download https://bonga.unisimon.edu.co/bitstreams/9ba5d955-5713-4f3f-ad58-8513711dcbbf/download https://bonga.unisimon.edu.co/bitstreams/5e8a42f8-ec44-4a34-a4a0-2f624ce681d5/download https://bonga.unisimon.edu.co/bitstreams/a6ffa8df-c5c5-4269-8dfa-3bb9bd8f871b/download https://bonga.unisimon.edu.co/bitstreams/ddc15132-d0c9-4ff6-ad42-6eef79d9b8d6/download |
bitstream.checksum.fl_str_mv |
e6361aaf2d526eb5d99fd361c3c3b4a3 4460e5956bc1d1639be9ae6146a50347 733bec43a0bf5ade4d97db708e29b185 4d973bba373335eb0dd685c332e4d125 794b5fd0f01a8f8dcd821f405005cdb9 4b21bfc86d5ee5e6eb5828a11b0319db 576a180a20f3d69b3cc10b698b8261f4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076108835913728 |
spelling |
Acosta-Humañez, Primitivo B.5f8619c8-ca55-4966-b0fc-8bdbd598be6eVan Der Put, Marius5e24ab93-6d99-4b57-873e-4eb0de06a4eaTop, Jaapff7e2b03-d42f-44c0-a0c0-bd98cd707fec2019-11-12T20:08:30Z2019-11-12T20:08:30Z201918150659https://hdl.handle.net/20.500.12442/4330This paper rst discusses irreducibility of a Painlev e equation P. We explain how the Painlev e property is helpful for the computation of special classical and algebraic solutions. As in a paper of Morales-Ruiz we associate an autonomous Hamiltonian H to a Painlev e equation P. Complete integrability of H is shown to imply that all solutions to P are classical (which includes algebraic), so in particular P is solvable by \quadratures". Next, we show that the variational equation of P at a given algebraic solution coincides with the normal variational equation of H at the corresponding solution. Finally, we test the Morales-Ramis theorem in all cases P2 to P5 where algebraic solutions are present, by showing how our results lead to a quick computation of the component of the identity of the di erential Galois group for the rst two variational equations. As expected there are no cases where this group is commutative.SIGMAAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_14cbSymmetry, Integrability and Geometry: Methods and ApplicationsVol. 15, (2019)https://www.emis.de/journals/SIGMA/2019/088/sigma19-088.pdfAcosta-Humánez P.B., Nonautonomous Hamiltonian systems and Morales-Ramis theory. I. The case x = f(x; t), SIAM J. Appl. Dyn. Syst. 8 (2009), 279{297, arXiv:0808.3028.Acosta-Humánez P.B., van der Put M., Top J., Isomonodromy for the degenerate fth Painlevé equation, SIGMA 13 (2017), 029, 14 pages, arXiv:1612.03674.Casale G.,Weil J.A., Galoisian methods for testing irreducibility of order two nonlinear differential equations, Paci c J. Math. 297 (2018), 299{337, arXiv:1504.08134.Clarkson P.A., Painlevé equations - nonlinear special functions, slides presented during the IMA Summer Program Special Functions in the Digital Age, Minneapolis, July 22 - August 2, 2002, available at http: //www.math.rug.nl/~top/Clarkson.pdf.Clarkson P.A., Special polynomials associated with rational solutions of the fth Painlevé equation, J. Com- put. Appl. Math. 178 (2005), 111{129.Clarkson P.A., Painlevé equations - nonlinear special functions, in Orthogonal Polynomials and Special Functions, Lecture Notes in Math., Vol. 1883, Editors F. Marcellán, W. Van Assche, Springer, Berlin, 2006, 331{411.Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Studies in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin, 2002.Horozov E., Stoyanova T., Non-integrability of some Painlevé VI-equations and dilogarithms, Regul. Chaotic Dyn. 12 (2007), 622{629.Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407{448.Lukashevich N.A., On the theory of Painlevé's third equation, Differ. Uravn. 3 (1967), 1913{1923.Lukashevich N.A., The solutions of Painlevé's fth equation, Differ. Uravn. 4 (1968), 1413{1420.Matsuda M., First-order algebraic differential equations. A differential algebraic approach, Lecture Notes in Math., Vol. 804, Springer, Berlin, 1980.Morales-Ruiz J.J., A remark about the Painlevé transcendents, in Théories asymptotiques et équations de Painlevé, Sémin. Congr., Vol. 14, Soc. Math. France, Paris, 2006, 229-235.Morales-Ruiz J.J., Ramis J.P., Galoisian obstructions to integrability of Hamiltonian systems, Methods Appl. Anal. 8 (2001), 33{96.Morales-Ruiz J.J., Ramis J.P., Simo C., Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. École Norm. Sup. (4) 40 (2007), 845-884.Muntingh G., van der Put M., Order one equations with the Painlevé property, Indag. Math. (N.S.) 18 (2007), 83-95, arXiv:1202.4633.Nagloo J., Pillay A., On algebraic relations between solutions of a generic Painlevé equation, J. Reine Angew. Math. 726 (2017), 1{27, arXiv:1112.2916.Ngo Chau L.X., Nguyen K.A., van der Put M., Top J., Equivalence of differential equations of order one, J. Symbolic Comput. 71 (2015), 47{59, arXiv:1303.4960.Ohyama Y., Kawamuko H., Sakai H., Okamoto K., Studies on the Painlevé equations. V. Third Painlevé equations of special type PIII(D7) and PIII(D8), J. Math. Sci. Univ. Tokyo 13 (2006), 145{204.Ohyama Y., Okumura S., R. Fuchs' problem of the Painlevé equations from the rst to the fth, in Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., Vol. 593, Amer. Math. Soc., Providence, RI, 2013, 163{178, arXiv:math.CA/0512243.Stoyanova T., Non-integrability of Painlevé VI equations in the Liouville sense, Nonlinearity 22 (2009), 2201{2230.Stoyanova T., Non-integrability of Painlevé V equations in the Liouville sense and Stokes phenomenon, Adv. Pure Math. 1 (2011), 170{183.Stoyanova T., A note on the R. Fuchs's problem for the Painlevé equations, arXiv:1204.0157.Stoyanova T., Non-integrability of the fourth Painlevé equation in the Liouville-Arnold sense, Nonlinearity 27 (2014), 1029-1044.Stoyanova T., Christov O., Non-integrability of the second Painlevé equation as a Hamiltonian system, C. R. Acad. Bulgare Sci. 60 (2007), 13{18, arXiv:1103.2443.Umemura H., On the irreducibility of the rst differential equation of Painlevé, in Algebraic Geometry and Commutative Algebra, Vol. II, Kinokuniya, Tokyo, 1988, 771-789.Umemura H., Second proof of the irreducibility of the rst differential equation of Painlevé, Nagoya Math. J. 117 (1990), 125{171.Umemura H., Birational automorphism groups and differential equations, Nagoya Math. J. 119 (1990), 1{80.Umemura H., Watanabe H., Solutions of the second and fourth Painlevé equations. I, Nagoya Math. J. 148 (1997), 151{198.van der Put M., Saito M.H., Moduli spaces for linear differential equations and the Painlevé equations, Ann. Inst. Fourier (Grenoble) 59 (2009), 2611{2667, arXiv:0902.1702.van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003.Z_ ol ádek H., Filipuk G., Painlevé equations, elliptic integrals and elementary functions, J. Differential Equa- tions 258 (2015), 1303{1355.Hamiltonian systemsVariational equationsPainlevé equationsdifferential Galois groupsVariations for Some Painlevé Equationsarticlehttp://purl.org/coar/resource_type/c_6501ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf373806https://bonga.unisimon.edu.co/bitstreams/9f9c9d84-1d5f-4ff7-a531-f12eaf9eb505/downloade6361aaf2d526eb5d99fd361c3c3b4a3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/79cf742b-23a1-4953-b508-e41ae47ae841/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/1733f6fa-e30d-46e7-893c-a1882066d71b/download733bec43a0bf5ade4d97db708e29b185MD53TEXTVariationsforSome_Painleve_Equations.pdf.txtVariationsforSome_Painleve_Equations.pdf.txtExtracted texttext/plain34900https://bonga.unisimon.edu.co/bitstreams/9ba5d955-5713-4f3f-ad58-8513711dcbbf/download4d973bba373335eb0dd685c332e4d125MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain37794https://bonga.unisimon.edu.co/bitstreams/5e8a42f8-ec44-4a34-a4a0-2f624ce681d5/download794b5fd0f01a8f8dcd821f405005cdb9MD56THUMBNAILVariationsforSome_Painleve_Equations.pdf.jpgVariationsforSome_Painleve_Equations.pdf.jpgGenerated Thumbnailimage/jpeg1641https://bonga.unisimon.edu.co/bitstreams/a6ffa8df-c5c5-4269-8dfa-3bb9bd8f871b/download4b21bfc86d5ee5e6eb5828a11b0319dbMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5357https://bonga.unisimon.edu.co/bitstreams/ddc15132-d0c9-4ff6-ad42-6eef79d9b8d6/download576a180a20f3d69b3cc10b698b8261f4MD5720.500.12442/4330oai:bonga.unisimon.edu.co:20.500.12442/43302024-08-14 21:52:29.867http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |