Variations for Some Painlevé Equations

This paper rst discusses irreducibility of a Painlev e equation P. We explain how the Painlev e property is helpful for the computation of special classical and algebraic solutions. As in a paper of Morales-Ruiz we associate an autonomous Hamiltonian H to a Painlev e equation P. Complete integrabili...

Full description

Autores:
Acosta-Humañez, Primitivo B.
Van Der Put, Marius
Top, Jaap
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/4330
Acceso en línea:
https://hdl.handle.net/20.500.12442/4330
Palabra clave:
Hamiltonian systems
Variational equations
Painlevé equations
differential Galois groups
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_81e6a03f15b15ef4bb72716b62fd476e
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/4330
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Variations for Some Painlevé Equations
title Variations for Some Painlevé Equations
spellingShingle Variations for Some Painlevé Equations
Hamiltonian systems
Variational equations
Painlevé equations
differential Galois groups
title_short Variations for Some Painlevé Equations
title_full Variations for Some Painlevé Equations
title_fullStr Variations for Some Painlevé Equations
title_full_unstemmed Variations for Some Painlevé Equations
title_sort Variations for Some Painlevé Equations
dc.creator.fl_str_mv Acosta-Humañez, Primitivo B.
Van Der Put, Marius
Top, Jaap
dc.contributor.author.none.fl_str_mv Acosta-Humañez, Primitivo B.
Van Der Put, Marius
Top, Jaap
dc.subject.eng.fl_str_mv Hamiltonian systems
Variational equations
Painlevé equations
differential Galois groups
topic Hamiltonian systems
Variational equations
Painlevé equations
differential Galois groups
description This paper rst discusses irreducibility of a Painlev e equation P. We explain how the Painlev e property is helpful for the computation of special classical and algebraic solutions. As in a paper of Morales-Ruiz we associate an autonomous Hamiltonian H to a Painlev e equation P. Complete integrability of H is shown to imply that all solutions to P are classical (which includes algebraic), so in particular P is solvable by \quadratures". Next, we show that the variational equation of P at a given algebraic solution coincides with the normal variational equation of H at the corresponding solution. Finally, we test the Morales-Ramis theorem in all cases P2 to P5 where algebraic solutions are present, by showing how our results lead to a quick computation of the component of the identity of the di erential Galois group for the rst two variational equations. As expected there are no cases where this group is commutative.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-11-12T20:08:30Z
dc.date.available.none.fl_str_mv 2019-11-12T20:08:30Z
dc.date.issued.none.fl_str_mv 2019
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 18150659
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/4330
identifier_str_mv 18150659
url https://hdl.handle.net/20.500.12442/4330
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_14cb
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_14cb
dc.publisher.eng.fl_str_mv SIGMA
dc.source.eng.fl_str_mv Symmetry, Integrability and Geometry: Methods and Applications
dc.source.spa.fl_str_mv Vol. 15, (2019)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv https://www.emis.de/journals/SIGMA/2019/088/sigma19-088.pdf
dc.source.bibliographicCitation.eng.fl_str_mv Acosta-Humánez P.B., Nonautonomous Hamiltonian systems and Morales-Ramis theory. I. The case x = f(x; t), SIAM J. Appl. Dyn. Syst. 8 (2009), 279{297, arXiv:0808.3028.
Acosta-Humánez P.B., van der Put M., Top J., Isomonodromy for the degenerate fth Painlevé equation, SIGMA 13 (2017), 029, 14 pages, arXiv:1612.03674.
Casale G.,Weil J.A., Galoisian methods for testing irreducibility of order two nonlinear differential equations, Paci c J. Math. 297 (2018), 299{337, arXiv:1504.08134.
Clarkson P.A., Painlevé equations - nonlinear special functions, slides presented during the IMA Summer Program Special Functions in the Digital Age, Minneapolis, July 22 - August 2, 2002, available at http: //www.math.rug.nl/~top/Clarkson.pdf.
Clarkson P.A., Special polynomials associated with rational solutions of the fth Painlevé equation, J. Com- put. Appl. Math. 178 (2005), 111{129.
Clarkson P.A., Painlevé equations - nonlinear special functions, in Orthogonal Polynomials and Special Functions, Lecture Notes in Math., Vol. 1883, Editors F. Marcellán, W. Van Assche, Springer, Berlin, 2006, 331{411.
Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Studies in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin, 2002.
Horozov E., Stoyanova T., Non-integrability of some Painlevé VI-equations and dilogarithms, Regul. Chaotic Dyn. 12 (2007), 622{629.
Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407{448.
Lukashevich N.A., On the theory of Painlevé's third equation, Differ. Uravn. 3 (1967), 1913{1923.
Lukashevich N.A., The solutions of Painlevé's fth equation, Differ. Uravn. 4 (1968), 1413{1420.
Matsuda M., First-order algebraic differential equations. A differential algebraic approach, Lecture Notes in Math., Vol. 804, Springer, Berlin, 1980.
Morales-Ruiz J.J., A remark about the Painlevé transcendents, in Théories asymptotiques et équations de Painlevé, Sémin. Congr., Vol. 14, Soc. Math. France, Paris, 2006, 229-235.
Morales-Ruiz J.J., Ramis J.P., Galoisian obstructions to integrability of Hamiltonian systems, Methods Appl. Anal. 8 (2001), 33{96.
Morales-Ruiz J.J., Ramis J.P., Simo C., Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. École Norm. Sup. (4) 40 (2007), 845-884.
Muntingh G., van der Put M., Order one equations with the Painlevé property, Indag. Math. (N.S.) 18 (2007), 83-95, arXiv:1202.4633.
Nagloo J., Pillay A., On algebraic relations between solutions of a generic Painlevé equation, J. Reine Angew. Math. 726 (2017), 1{27, arXiv:1112.2916.
Ngo Chau L.X., Nguyen K.A., van der Put M., Top J., Equivalence of differential equations of order one, J. Symbolic Comput. 71 (2015), 47{59, arXiv:1303.4960.
Ohyama Y., Kawamuko H., Sakai H., Okamoto K., Studies on the Painlevé equations. V. Third Painlevé equations of special type PIII(D7) and PIII(D8), J. Math. Sci. Univ. Tokyo 13 (2006), 145{204.
Ohyama Y., Okumura S., R. Fuchs' problem of the Painlevé equations from the rst to the fth, in Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., Vol. 593, Amer. Math. Soc., Providence, RI, 2013, 163{178, arXiv:math.CA/0512243.
Stoyanova T., Non-integrability of Painlevé VI equations in the Liouville sense, Nonlinearity 22 (2009), 2201{2230.
Stoyanova T., Non-integrability of Painlevé V equations in the Liouville sense and Stokes phenomenon, Adv. Pure Math. 1 (2011), 170{183.
Stoyanova T., A note on the R. Fuchs's problem for the Painlevé equations, arXiv:1204.0157.
Stoyanova T., Non-integrability of the fourth Painlevé equation in the Liouville-Arnold sense, Nonlinearity 27 (2014), 1029-1044.
Stoyanova T., Christov O., Non-integrability of the second Painlevé equation as a Hamiltonian system, C. R. Acad. Bulgare Sci. 60 (2007), 13{18, arXiv:1103.2443.
Umemura H., On the irreducibility of the rst differential equation of Painlevé, in Algebraic Geometry and Commutative Algebra, Vol. II, Kinokuniya, Tokyo, 1988, 771-789.
Umemura H., Second proof of the irreducibility of the rst differential equation of Painlevé, Nagoya Math. J. 117 (1990), 125{171.
Umemura H., Birational automorphism groups and differential equations, Nagoya Math. J. 119 (1990), 1{80.
Umemura H., Watanabe H., Solutions of the second and fourth Painlevé equations. I, Nagoya Math. J. 148 (1997), 151{198.
van der Put M., Saito M.H., Moduli spaces for linear differential equations and the Painlevé equations, Ann. Inst. Fourier (Grenoble) 59 (2009), 2611{2667, arXiv:0902.1702.
van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003.
Z_ ol ádek H., Filipuk G., Painlevé equations, elliptic integrals and elementary functions, J. Differential Equa- tions 258 (2015), 1303{1355.
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/9f9c9d84-1d5f-4ff7-a531-f12eaf9eb505/download
https://bonga.unisimon.edu.co/bitstreams/79cf742b-23a1-4953-b508-e41ae47ae841/download
https://bonga.unisimon.edu.co/bitstreams/1733f6fa-e30d-46e7-893c-a1882066d71b/download
https://bonga.unisimon.edu.co/bitstreams/9ba5d955-5713-4f3f-ad58-8513711dcbbf/download
https://bonga.unisimon.edu.co/bitstreams/5e8a42f8-ec44-4a34-a4a0-2f624ce681d5/download
https://bonga.unisimon.edu.co/bitstreams/a6ffa8df-c5c5-4269-8dfa-3bb9bd8f871b/download
https://bonga.unisimon.edu.co/bitstreams/ddc15132-d0c9-4ff6-ad42-6eef79d9b8d6/download
bitstream.checksum.fl_str_mv e6361aaf2d526eb5d99fd361c3c3b4a3
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
4d973bba373335eb0dd685c332e4d125
794b5fd0f01a8f8dcd821f405005cdb9
4b21bfc86d5ee5e6eb5828a11b0319db
576a180a20f3d69b3cc10b698b8261f4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076108835913728
spelling Acosta-Humañez, Primitivo B.5f8619c8-ca55-4966-b0fc-8bdbd598be6eVan Der Put, Marius5e24ab93-6d99-4b57-873e-4eb0de06a4eaTop, Jaapff7e2b03-d42f-44c0-a0c0-bd98cd707fec2019-11-12T20:08:30Z2019-11-12T20:08:30Z201918150659https://hdl.handle.net/20.500.12442/4330This paper rst discusses irreducibility of a Painlev e equation P. We explain how the Painlev e property is helpful for the computation of special classical and algebraic solutions. As in a paper of Morales-Ruiz we associate an autonomous Hamiltonian H to a Painlev e equation P. Complete integrability of H is shown to imply that all solutions to P are classical (which includes algebraic), so in particular P is solvable by \quadratures". Next, we show that the variational equation of P at a given algebraic solution coincides with the normal variational equation of H at the corresponding solution. Finally, we test the Morales-Ramis theorem in all cases P2 to P5 where algebraic solutions are present, by showing how our results lead to a quick computation of the component of the identity of the di erential Galois group for the rst two variational equations. As expected there are no cases where this group is commutative.SIGMAAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_14cbSymmetry, Integrability and Geometry: Methods and ApplicationsVol. 15, (2019)https://www.emis.de/journals/SIGMA/2019/088/sigma19-088.pdfAcosta-Humánez P.B., Nonautonomous Hamiltonian systems and Morales-Ramis theory. I. The case x = f(x; t), SIAM J. Appl. Dyn. Syst. 8 (2009), 279{297, arXiv:0808.3028.Acosta-Humánez P.B., van der Put M., Top J., Isomonodromy for the degenerate fth Painlevé equation, SIGMA 13 (2017), 029, 14 pages, arXiv:1612.03674.Casale G.,Weil J.A., Galoisian methods for testing irreducibility of order two nonlinear differential equations, Paci c J. Math. 297 (2018), 299{337, arXiv:1504.08134.Clarkson P.A., Painlevé equations - nonlinear special functions, slides presented during the IMA Summer Program Special Functions in the Digital Age, Minneapolis, July 22 - August 2, 2002, available at http: //www.math.rug.nl/~top/Clarkson.pdf.Clarkson P.A., Special polynomials associated with rational solutions of the fth Painlevé equation, J. Com- put. Appl. Math. 178 (2005), 111{129.Clarkson P.A., Painlevé equations - nonlinear special functions, in Orthogonal Polynomials and Special Functions, Lecture Notes in Math., Vol. 1883, Editors F. Marcellán, W. Van Assche, Springer, Berlin, 2006, 331{411.Gromak V.I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Studies in Mathematics, Vol. 28, Walter de Gruyter & Co., Berlin, 2002.Horozov E., Stoyanova T., Non-integrability of some Painlevé VI-equations and dilogarithms, Regul. Chaotic Dyn. 12 (2007), 622{629.Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Phys. D 2 (1981), 407{448.Lukashevich N.A., On the theory of Painlevé's third equation, Differ. Uravn. 3 (1967), 1913{1923.Lukashevich N.A., The solutions of Painlevé's fth equation, Differ. Uravn. 4 (1968), 1413{1420.Matsuda M., First-order algebraic differential equations. A differential algebraic approach, Lecture Notes in Math., Vol. 804, Springer, Berlin, 1980.Morales-Ruiz J.J., A remark about the Painlevé transcendents, in Théories asymptotiques et équations de Painlevé, Sémin. Congr., Vol. 14, Soc. Math. France, Paris, 2006, 229-235.Morales-Ruiz J.J., Ramis J.P., Galoisian obstructions to integrability of Hamiltonian systems, Methods Appl. Anal. 8 (2001), 33{96.Morales-Ruiz J.J., Ramis J.P., Simo C., Integrability of Hamiltonian systems and differential Galois groups of higher variational equations, Ann. Sci. École Norm. Sup. (4) 40 (2007), 845-884.Muntingh G., van der Put M., Order one equations with the Painlevé property, Indag. Math. (N.S.) 18 (2007), 83-95, arXiv:1202.4633.Nagloo J., Pillay A., On algebraic relations between solutions of a generic Painlevé equation, J. Reine Angew. Math. 726 (2017), 1{27, arXiv:1112.2916.Ngo Chau L.X., Nguyen K.A., van der Put M., Top J., Equivalence of differential equations of order one, J. Symbolic Comput. 71 (2015), 47{59, arXiv:1303.4960.Ohyama Y., Kawamuko H., Sakai H., Okamoto K., Studies on the Painlevé equations. V. Third Painlevé equations of special type PIII(D7) and PIII(D8), J. Math. Sci. Univ. Tokyo 13 (2006), 145{204.Ohyama Y., Okumura S., R. Fuchs' problem of the Painlevé equations from the rst to the fth, in Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., Vol. 593, Amer. Math. Soc., Providence, RI, 2013, 163{178, arXiv:math.CA/0512243.Stoyanova T., Non-integrability of Painlevé VI equations in the Liouville sense, Nonlinearity 22 (2009), 2201{2230.Stoyanova T., Non-integrability of Painlevé V equations in the Liouville sense and Stokes phenomenon, Adv. Pure Math. 1 (2011), 170{183.Stoyanova T., A note on the R. Fuchs's problem for the Painlevé equations, arXiv:1204.0157.Stoyanova T., Non-integrability of the fourth Painlevé equation in the Liouville-Arnold sense, Nonlinearity 27 (2014), 1029-1044.Stoyanova T., Christov O., Non-integrability of the second Painlevé equation as a Hamiltonian system, C. R. Acad. Bulgare Sci. 60 (2007), 13{18, arXiv:1103.2443.Umemura H., On the irreducibility of the rst differential equation of Painlevé, in Algebraic Geometry and Commutative Algebra, Vol. II, Kinokuniya, Tokyo, 1988, 771-789.Umemura H., Second proof of the irreducibility of the rst differential equation of Painlevé, Nagoya Math. J. 117 (1990), 125{171.Umemura H., Birational automorphism groups and differential equations, Nagoya Math. J. 119 (1990), 1{80.Umemura H., Watanabe H., Solutions of the second and fourth Painlevé equations. I, Nagoya Math. J. 148 (1997), 151{198.van der Put M., Saito M.H., Moduli spaces for linear differential equations and the Painlevé equations, Ann. Inst. Fourier (Grenoble) 59 (2009), 2611{2667, arXiv:0902.1702.van der Put M., Singer M.F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, Vol. 328, Springer-Verlag, Berlin, 2003.Z_ ol ádek H., Filipuk G., Painlevé equations, elliptic integrals and elementary functions, J. Differential Equa- tions 258 (2015), 1303{1355.Hamiltonian systemsVariational equationsPainlevé equationsdifferential Galois groupsVariations for Some Painlevé Equationsarticlehttp://purl.org/coar/resource_type/c_6501ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf373806https://bonga.unisimon.edu.co/bitstreams/9f9c9d84-1d5f-4ff7-a531-f12eaf9eb505/downloade6361aaf2d526eb5d99fd361c3c3b4a3MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/79cf742b-23a1-4953-b508-e41ae47ae841/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/1733f6fa-e30d-46e7-893c-a1882066d71b/download733bec43a0bf5ade4d97db708e29b185MD53TEXTVariationsforSome_Painleve_Equations.pdf.txtVariationsforSome_Painleve_Equations.pdf.txtExtracted texttext/plain34900https://bonga.unisimon.edu.co/bitstreams/9ba5d955-5713-4f3f-ad58-8513711dcbbf/download4d973bba373335eb0dd685c332e4d125MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain37794https://bonga.unisimon.edu.co/bitstreams/5e8a42f8-ec44-4a34-a4a0-2f624ce681d5/download794b5fd0f01a8f8dcd821f405005cdb9MD56THUMBNAILVariationsforSome_Painleve_Equations.pdf.jpgVariationsforSome_Painleve_Equations.pdf.jpgGenerated Thumbnailimage/jpeg1641https://bonga.unisimon.edu.co/bitstreams/a6ffa8df-c5c5-4269-8dfa-3bb9bd8f871b/download4b21bfc86d5ee5e6eb5828a11b0319dbMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5357https://bonga.unisimon.edu.co/bitstreams/ddc15132-d0c9-4ff6-ad42-6eef79d9b8d6/download576a180a20f3d69b3cc10b698b8261f4MD5720.500.12442/4330oai:bonga.unisimon.edu.co:20.500.12442/43302024-08-14 21:52:29.867http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u