High-Pressure fractionation of tropical fruits with potential antibacterial activity: M. indica L. and B. Guineensis

The great interest in the potential health benefits of tropical fruits is due to their high content of antioxidants and phytochemicals. Colombia ranks as the second country with the major biodiversity worldwide. B. guineensis (Arecaceae) is a palm that grows in Colombia and Central America. The purp...

Full description

Autores:
Fernández-Ponce, María Teresa
Soto Varela, Zamira E.
Castro Gil, Pacífico
Casas, Lourdes
Mantell, Casimiro
Martínez de la Ossa, Enrique J.
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/3891
Acceso en línea:
https://hdl.handle.net/20.500.12442/3891
Palabra clave:
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_790e2f849ec532063dcb182f5aa7cec9
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/3891
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv High-Pressure fractionation of tropical fruits with potential antibacterial activity: M. indica L. and B. Guineensis
title High-Pressure fractionation of tropical fruits with potential antibacterial activity: M. indica L. and B. Guineensis
spellingShingle High-Pressure fractionation of tropical fruits with potential antibacterial activity: M. indica L. and B. Guineensis
title_short High-Pressure fractionation of tropical fruits with potential antibacterial activity: M. indica L. and B. Guineensis
title_full High-Pressure fractionation of tropical fruits with potential antibacterial activity: M. indica L. and B. Guineensis
title_fullStr High-Pressure fractionation of tropical fruits with potential antibacterial activity: M. indica L. and B. Guineensis
title_full_unstemmed High-Pressure fractionation of tropical fruits with potential antibacterial activity: M. indica L. and B. Guineensis
title_sort High-Pressure fractionation of tropical fruits with potential antibacterial activity: M. indica L. and B. Guineensis
dc.creator.fl_str_mv Fernández-Ponce, María Teresa
Soto Varela, Zamira E.
Castro Gil, Pacífico
Casas, Lourdes
Mantell, Casimiro
Martínez de la Ossa, Enrique J.
dc.contributor.author.none.fl_str_mv Fernández-Ponce, María Teresa
Soto Varela, Zamira E.
Castro Gil, Pacífico
Casas, Lourdes
Mantell, Casimiro
Martínez de la Ossa, Enrique J.
description The great interest in the potential health benefits of tropical fruits is due to their high content of antioxidants and phytochemicals. Colombia ranks as the second country with the major biodiversity worldwide. B. guineensis (Arecaceae) is a palm that grows in Colombia and Central America. The purple-black fruits of this plant are rich in thermal-stable anthocyanins. M. indica L. (Anacardiaceae) is a great source of phenolic compounds. It has multiple functional properties including antioxidant, antimicrobial, antidiabetic and anticarcinogenic activities. In this work, high-pressure extraction techniques: supercritical fluid extraction (SFE) and enhanced solvent extraction (ESE), and two different fractionation techniques: i) cascade fractionation and ii) sequential fractionation were applied. Fractions were analyzed by means of their phenolic content, antioxidant activity, and antibacterial activity against different bacterial strains: E. coli, P. mirabilis, S. Aurerus, S. enteritidis, E. aerogenes and P. aeruginosa. The sequential fractionation of B. guineensis pulp consisted in three steps: 1) supercritical CO2, 2) CO2 + 50% ethanol, and 3) CO2/EtOH/H2O (50:25:25). A red fraction rich in phenolic compounds, high antioxidant and antibacterial capacity (inhibition zone ~ 10 mm) was obtained in the last step. A cascade fractionation of M. indica leaves using CO2 + 50% H2O and three separators (S1, S2 and S3) was evaluated. Fractions obtained in S1 and S2 presented antioxidant capacity and antibacterial activity against P. mirabilis, and S2 also against S. Aureus and Salmonella.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-09-03T19:26:22Z
dc.date.available.none.fl_str_mv 2019-09-03T19:26:22Z
dc.date.issued.none.fl_str_mv 2019
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 22839216
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/3891
identifier_str_mv 22839216
url https://hdl.handle.net/20.500.12442/3891
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv Italian Association of Chemical Engineering
dc.source.eng.fl_str_mv CHEMICAL ENGINEERING TRANSACTIONS
dc.source.spa.fl_str_mv Vol. 75, 2019
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv DOI: 10.3303/CET1975010
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/a688b251-edbd-4546-b548-e8ad8d1b7088/download
https://bonga.unisimon.edu.co/bitstreams/9ed9aa10-a3a0-47fc-92a4-ec46860c7f07/download
https://bonga.unisimon.edu.co/bitstreams/4ea2d6e7-7425-4d98-9d99-22055428a477/download
https://bonga.unisimon.edu.co/bitstreams/8d907b33-74d2-42e3-8d4c-7be9f58b1b57/download
https://bonga.unisimon.edu.co/bitstreams/7a13da99-e8f4-4ae5-b260-0b4540ccb634/download
https://bonga.unisimon.edu.co/bitstreams/8c951233-8cd6-488b-a11a-05096760b9eb/download
https://bonga.unisimon.edu.co/bitstreams/6b1bf028-7bb9-4e5b-ac22-6c940d8c74ce/download
bitstream.checksum.fl_str_mv 10ff0bd7a5253e348ce7b811b8550e7b
4460e5956bc1d1639be9ae6146a50347
3fdc7b41651299350522650338f5754d
7e7f140443fbe28f27f8fe188c165bdd
ad38cfa42b6d552322f4af4850409a38
a616168d8726b712c55a09b5b5bbf8c5
f79e3419a08f35f1a55d93ba15b1e9ce
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076086863003648
spelling Fernández-Ponce, María Teresaf6b04b76-85ac-41e3-ace2-22b23a97bf4cSoto Varela, Zamira E.8ccc91c0-bc23-4fd8-af73-6b0bd1d72245Castro Gil, Pacíficoc5c22b5c-5f63-4376-a0cc-05d460964eefCasas, Lourdes9dbd461b-8a69-4b75-9c89-3ed293085909Mantell, Casimiroe78f38bc-eb2f-4433-a172-ffe677399cb0Martínez de la Ossa, Enrique J.14f1eeb7-534f-41ab-8bcb-b5e7d183a10f2019-09-03T19:26:22Z2019-09-03T19:26:22Z201922839216https://hdl.handle.net/20.500.12442/3891The great interest in the potential health benefits of tropical fruits is due to their high content of antioxidants and phytochemicals. Colombia ranks as the second country with the major biodiversity worldwide. B. guineensis (Arecaceae) is a palm that grows in Colombia and Central America. The purple-black fruits of this plant are rich in thermal-stable anthocyanins. M. indica L. (Anacardiaceae) is a great source of phenolic compounds. It has multiple functional properties including antioxidant, antimicrobial, antidiabetic and anticarcinogenic activities. In this work, high-pressure extraction techniques: supercritical fluid extraction (SFE) and enhanced solvent extraction (ESE), and two different fractionation techniques: i) cascade fractionation and ii) sequential fractionation were applied. Fractions were analyzed by means of their phenolic content, antioxidant activity, and antibacterial activity against different bacterial strains: E. coli, P. mirabilis, S. Aurerus, S. enteritidis, E. aerogenes and P. aeruginosa. The sequential fractionation of B. guineensis pulp consisted in three steps: 1) supercritical CO2, 2) CO2 + 50% ethanol, and 3) CO2/EtOH/H2O (50:25:25). A red fraction rich in phenolic compounds, high antioxidant and antibacterial capacity (inhibition zone ~ 10 mm) was obtained in the last step. A cascade fractionation of M. indica leaves using CO2 + 50% H2O and three separators (S1, S2 and S3) was evaluated. Fractions obtained in S1 and S2 presented antioxidant capacity and antibacterial activity against P. mirabilis, and S2 also against S. Aureus and Salmonella.engItalian Association of Chemical EngineeringAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2CHEMICAL ENGINEERING TRANSACTIONSVol. 75, 2019DOI: 10.3303/CET1975010High-Pressure fractionation of tropical fruits with potential antibacterial activity: M. indica L. and B. Guineensisarticlehttp://purl.org/coar/resource_type/c_6501Albarelli, J, Paidosh, A, Santos, DT, Maréchal, F & Meireles, MAA, 2016, Environmental, energetic and economic evaluation of implementing a supercritical fluid-based nanocellulose production rocess in a sugarcane biorefinery, Chemical Engineering Transactions, 47, 49-54Bernal, R & Galeano, G, 2006, Endangerment of Colombian Palms (Arecaceae): change over 18 years, Botanical Journal of the Linnean Society, 151, 151–163.Bernal, R, Torres, C, García, N, Isaza, C, Navarro, J, Vallejo, MI & Galeano, G, 2011, Palm Management in South America, The Botanical Review, 77, 607–646.Casas, L, Mantell, C, Rodríguez, M, López, E & Martínez de la Ossa, E, 2009, Industrial design of multifunctional supercritical extraction plant for agro-food raw materials, Chemical Engineering Transactions, 7, 1585-1590.Fernández-Ponce, MT, Casas, L, Mantell, C & Martínez de la Ossa, E, 2015, Use of high pressure techniques to produce Mangifera indica L. leaf extracts enriched in potent antioxidant phenolic compounds, Innovative Food Science and Emerging Technologies, 29, 94–106.Fernández-Ponce, MT, Casas, L, Mantell, C, Rodríguez, M & Martínez de la Ossa, E, 2012, Extraction of antioxidant compounds from different varieties of Mangifera indica leaves using green technologies, The Journal of Supercritical Fluids, 72, 168– 175.Fernández-Ponce, MT, Casas, L, Mantell. C & Martínez de la Ossa, EJ, 2013, Potential use of mango leaves extracts obtained by high pressure technologies in cosmetic, pharmaceutics and food industries, Chemical Engineering Transactions, 13, 1147-1151.Fernández-Ponce, MT, López-Biedma, A, Sánchez-Quesada, C, Casas, L, Mantell, C, Gaforio & JJ, Martínez de la Ossa, EJ, 2017, Selective antitumoural action of pressurized mango leaf extracts against minimally and highly invasive breast cancer, Food & Function, 8, 3610-3620.Fuentes-Gandara, F, Torres, A, Fernández-Ponce, MT, Casas, L, Mantell, C, Varela, R, Martínez de la Ossa- Fernández, EJ & Macías, FA, 2019, Selective fractionation and isolation of allelopathic compounds from Helianthus annuus L. leaves by means of high-pressure techniques, The Journal of Supercritical Fluids, 143, 32-41.Infante-Garcia, C, Ramos-Rodriguez, JJ, Delgado-Olmos, I, Gamero-Carrasco, C, Fernandez-Ponce, MT, Casas, L, Mantell, C & Garcia-Alloza M, 2017a, Long-term mangiferin extract treatment Improves central pathology and cognitive deficits in APP/PS1 mice, Molecular Neurobiology, 54, 4696–4704.Infante-Garcia, C, Ramos-Rodriguez, JJ, Marin‐Zambrana, Y, Fernandez-Ponce, MT, Casas, L, Mantell, C & Garcia-Alloza M, 2017b, Mango leaf extract improves central pathology and cognitive impairment in a type 2 diabetes mouse model, Brain Pathology, 27, 499-507.Leyva-Jimenez, FJ, Lozano-Sanchez, J, Borras-Linares, I, Cadiz-Gurrea, ML & Mahmoodi-Khaledi, E, 2018, Potential antimicrobial activity of honey phenolic compounds against Gram positive and Gram negative bacteria, LWT, 101, 236–45.López, S, Mart, M, Sequeda, LG, Celis, C, Sutachana, JJ & Albarracín, SL, 2017, Cytoprotective action against oxidative stress in astrocytes and neurons by Bactris guineensis (L.) H.E. Moore (corozo) fruit extracts, Food and Chemical Toxicology, 109, 1010-1017.Moura, Q, Fernandes, MR, Cerdeira, L, Nhambe, LF, Lenne & S, Souza, TA, 2017, Draft genome sequence of a multidrug-resistant KPC-2-producing Enterobacter aerogenes isolated from a hospitalised patient in Brazil, Journal of Global Antimicrobial Resistance, 10, 277–8.Ng, KR, Lyu, X, Mark, R & Chen, WN, 2018, Antimicrobial and antioxidant activities of phenolic metabolites from flavonoid-producing yeast: Potential as natural food preservative, Food Chemistry, 270, 123–129.Osorio, C, Carriaz, JG & Almanza, O, 2011, Antioxidant activity of corozo (Bactris guineensis) fruit by electron paramagnetic resonance (EPR) spectroscopy, European Food Research and Technology, 233, 103–108.Paula, JT, Paviani, LC, Foglio, MA, Sousa, IMO, Duarte, GHB, Jorge, MP, Eberlin, MN, Cabral & FA, 2014, Extraction of anthocyanins and luteolin from Arrabidaea chica by sequential extraction in fixed bed using supercritical CO2, ethanol and water as solvents, The Journal of Supercritical Fluids, 86, 100–107.Paula, JT, Souza, IMO, Foglio, MA & Cabral, FA, 2017, Selective fractionation of supercritical extracts from leaves of Baccharis dracunculifolia, The Journal of Supercritical Fluids, 127, 62–70.Scherer, R & Godoy, HT, 2009, Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method, Food Chemistry, 112, 654-658.Seabra, IJ, Braga, MEM, Batista, MT & de Sousa, HC, 2010, Effect of solvent (CO2/ethanol/H2O) on the fractionated enhanced solvent extraction of anthocyanins from elderberry pomace, The Journal of Supercritical Fluids, 54, 145–152.Singh, R, Singh, SK, Maharia, RS & Garg, AN, 2015, Identification of new phytoconstituents and antimicrobial activity in stem bark of Mangifera indica (L.), Journal of Pharmaceutical and Biomedical Analysis, 105, 150–155.Rojano, B, Cristina, ZI & Bernardo, CF, 2012, Estabilidad de antocianinas y valores de capacidad de absorbancia de radicales oxígeno (ORAC) de extractos acuosos de corozo (Bactris guineensis), Revista Cubana de Plantas Medicinales, 17, 244-255.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf704335https://bonga.unisimon.edu.co/bitstreams/a688b251-edbd-4546-b548-e8ad8d1b7088/download10ff0bd7a5253e348ce7b811b8550e7bMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/9ed9aa10-a3a0-47fc-92a4-ec46860c7f07/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/4ea2d6e7-7425-4d98-9d99-22055428a477/download3fdc7b41651299350522650338f5754dMD53TEXTHigh-Pressure_Fractionation.pdf.txtHigh-Pressure_Fractionation.pdf.txtExtracted texttext/plain28099https://bonga.unisimon.edu.co/bitstreams/8d907b33-74d2-42e3-8d4c-7be9f58b1b57/download7e7f140443fbe28f27f8fe188c165bddMD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain28315https://bonga.unisimon.edu.co/bitstreams/7a13da99-e8f4-4ae5-b260-0b4540ccb634/downloadad38cfa42b6d552322f4af4850409a38MD56THUMBNAILHigh-Pressure_Fractionation.pdf.jpgHigh-Pressure_Fractionation.pdf.jpgGenerated Thumbnailimage/jpeg1685https://bonga.unisimon.edu.co/bitstreams/8c951233-8cd6-488b-a11a-05096760b9eb/downloada616168d8726b712c55a09b5b5bbf8c5MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5920https://bonga.unisimon.edu.co/bitstreams/6b1bf028-7bb9-4e5b-ac22-6c940d8c74ce/downloadf79e3419a08f35f1a55d93ba15b1e9ceMD5720.500.12442/3891oai:bonga.unisimon.edu.co:20.500.12442/38912024-08-14 21:51:46.815http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=