Functional analysis of toxins by clustering of their electrostatic potentials
This is the first time, to our knowledge, that a structural description of the function of protein toxins has been addressed from a new perspective living behind the traditional approach of using common characteristic like α-helixes, β-sheets, and others, and instead using the electrostatic surface...
- Autores:
-
Martínez-Villate, Germán Camilo
Estévez-Bretón, Carlos Manuel
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/2552
- Acceso en línea:
- http://hdl.handle.net/20.500.12442/2552
- Palabra clave:
- Clustering
Toxins
Electrostatic Potential
- Rights
- License
- Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id |
USIMONBOL2_77e28cf9d705dd626944505039ce455c |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/2552 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Functional analysis of toxins by clustering of their electrostatic potentials |
title |
Functional analysis of toxins by clustering of their electrostatic potentials |
spellingShingle |
Functional analysis of toxins by clustering of their electrostatic potentials Clustering Toxins Electrostatic Potential |
title_short |
Functional analysis of toxins by clustering of their electrostatic potentials |
title_full |
Functional analysis of toxins by clustering of their electrostatic potentials |
title_fullStr |
Functional analysis of toxins by clustering of their electrostatic potentials |
title_full_unstemmed |
Functional analysis of toxins by clustering of their electrostatic potentials |
title_sort |
Functional analysis of toxins by clustering of their electrostatic potentials |
dc.creator.fl_str_mv |
Martínez-Villate, Germán Camilo Estévez-Bretón, Carlos Manuel |
dc.contributor.advisor.none.fl_str_mv |
Estévez-Bretón, Carlos Manuel |
dc.contributor.author.none.fl_str_mv |
Martínez-Villate, Germán Camilo Estévez-Bretón, Carlos Manuel |
dc.subject.eng.fl_str_mv |
Clustering Toxins Electrostatic Potential |
topic |
Clustering Toxins Electrostatic Potential |
description |
This is the first time, to our knowledge, that a structural description of the function of protein toxins has been addressed from a new perspective living behind the traditional approach of using common characteristic like α-helixes, β-sheets, and others, and instead using the electrostatic surface potential (ESP). These potentials have been normally used for 3D visual representation of charge distribution, qualitative interpretations of electrophilic and nucleophilic reactions, and for molecular interactions because of the considerable computational time and effort it takes to calculate them. We calculate the ESP for 16 proteins toxins and compared the 3D shapes of their potentials using the Hausdorff-Gromov distance; then we ran k-means cluster analysis to determine the relation among the shapes of the ESPs. Our results show that the analysis was able to cluster toxins depending on the shape of their ESP and that this clustering is related to the toxins function. There were only 4 toxins that clustered in a different group according to their function, and one that did not cluster with any other group. There was no evidence that taxonomy has a relation with the clusters found. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018-12 |
dc.date.accessioned.none.fl_str_mv |
2019-02-04T14:42:11Z |
dc.date.available.none.fl_str_mv |
2019-02-04T14:42:11Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12442/2552 |
url |
http://hdl.handle.net/20.500.12442/2552 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.license.spa.fl_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional |
rights_invalid_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional http://purl.org/coar/access_right/c_16ec |
dc.publisher.spa.fl_str_mv |
Ediciones Universidad Simón Bolívar Facultad Ciencias Básicas y Biomédicas Programa de Maestría en genética |
institution |
Universidad Simón Bolívar |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/49c6ad7b-1dc3-4020-b84f-0c33aef243f6/download https://bonga.unisimon.edu.co/bitstreams/d2b9c6ea-1922-4897-b27f-8498664b58bb/download https://bonga.unisimon.edu.co/bitstreams/34f4030d-7557-4b13-b275-3d54a3e3fa99/download https://bonga.unisimon.edu.co/bitstreams/70f8f143-6571-4916-aa6c-17fdf74a4edb/download https://bonga.unisimon.edu.co/bitstreams/03546daa-8479-4c6c-9e57-7718b5251439/download https://bonga.unisimon.edu.co/bitstreams/84e6a00e-ede7-47d5-a07b-cdcb137692f3/download |
bitstream.checksum.fl_str_mv |
d6046544090c1ddf92f1bdf8141b3622 8a4605be74aa9ea9d79846c1fba20a33 5e360e00745a614a1999764c1c7f180b f5c4ba9c4efe1664889964a1c9d5e658 c3743cccc1193d7cc6d07f37de5decfa a38f61871b2d0e3922d52d33df407583 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076149082357760 |
spelling |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_16ecEstévez-Bretón, Carlos ManuelMartínez-Villate, Germán Camilo0047a4c5-6864-4dc0-ba06-ccbdf5af3ac7-1Estévez-Bretón, Carlos Manuel5392581e-1412-437e-b346-1398b0e25618-12019-02-04T14:42:11Z2019-02-04T14:42:11Z2018-12http://hdl.handle.net/20.500.12442/2552This is the first time, to our knowledge, that a structural description of the function of protein toxins has been addressed from a new perspective living behind the traditional approach of using common characteristic like α-helixes, β-sheets, and others, and instead using the electrostatic surface potential (ESP). These potentials have been normally used for 3D visual representation of charge distribution, qualitative interpretations of electrophilic and nucleophilic reactions, and for molecular interactions because of the considerable computational time and effort it takes to calculate them. We calculate the ESP for 16 proteins toxins and compared the 3D shapes of their potentials using the Hausdorff-Gromov distance; then we ran k-means cluster analysis to determine the relation among the shapes of the ESPs. Our results show that the analysis was able to cluster toxins depending on the shape of their ESP and that this clustering is related to the toxins function. There were only 4 toxins that clustered in a different group according to their function, and one that did not cluster with any other group. There was no evidence that taxonomy has a relation with the clusters found.engEdiciones Universidad Simón BolívarFacultad Ciencias Básicas y BiomédicasPrograma de Maestría en genéticaClusteringToxinsElectrostatic PotentialFunctional analysis of toxins by clustering of their electrostatic potentialsarticlehttp://purl.org/coar/resource_type/c_6501Abdullah, Z., Hamdan, A.R., 2015. Hierarchical Clustering Algorithms in Data Mining. waset.org 9, 1932–1937.Arruda Macêdo, J.K., Fox, J.W., de Souza Castro, M., 2015. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr. Protein Pept. Sci. 16, 532–48. https://doi.org/10.2174/1389203716666150515125002Belogay, E., Cabrelli, C., Molter, U., Shonkwiler, R., 1997. Calculating the Hausdorff distance between curves. Inf. Process. Lett. 64, 17–22. https://doi.org/10.1016/S0020-0190(97)00140-3Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., 2000. The Protein Data Bank. Nucleic Acids Res. 28, 235–242. https://doi.org/10.1107/97809553602060000722Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Thiel, K., Wiswedel, B., 2009. KNIME - the Konstanz information miner. ACM SIGKDD Explor. Newsl. 11, 26. https://doi.org/10.1145/1656274.1656280Black, R.A., Rauch, C.T., Kozlosky, C.J., Peschon, J.J., Slack, J.L., Wolfson, M.F., Castner, B.J., Stocking, K.L., Reddy, P., Srinivasan, S., Nelson, N., Boiani, N., Schooley, K.A., Gerhart, M., Davis, R., Fitzner, J.N., Johnson, R.S., Paxton, R.J., March, C.J., Cerretti, D.P., 1997. A metalloproteinase disintegrin that releases tumour-necrosis factor- from ∅cells. Nature. https://doi.org/10.1038/385729a0Blomberg, N., Gabdoulline, R.R., Nilges, M., Wade, R.C., 1999. Classification of protein sequences by homology modeling and quantitative analysis of electrostatic similarity. Proteins 37, 379–87. https://doi.org/10.1002/(SICI)1097-0134(19991115)37:3<379::AID-PROT6>3.0.CO;2-KBranstetter, M.G., Danforth, B.N., Pitts, J.P., Faircloth, B.C., Ward, P.S., Buffington, M.L., Gates, M.W., Kula, R.R., Brady, S.G., 2017. Phylogenomic Insights into the Evolution of Stinging Wasps and the Origins of Ants and Bees. Curr. Biol. 27, 1019–1025. https://doi.org/10.1016/j.cub.2017.03.027Calderon, L.A., Sobrinho, J.C., Zaqueo, K.D., de Moura, A.A., Grabner, A.N., Mazzi, M. V, Marcussi, S., Nomizo, A., Fernandes, C.F.C., Zuliani, J.P., Carvalho, B.M.A., da Silva, S.L., Stábeli, R.G., Soares, A.M., 2014. Antitumoral activity of snake venom proteins: new trends in cancer therapy. Biomed Res. Int. 2014, 203639. https://doi.org/10.1155/2014/203639Calvete, J.J., 2005. Structure-function correlations of snake venom disintegrins. Curr. Pharm. Des. 11, 829–835. https://doi.org/10.2174/1381612053381783Castañeda, O., Sotolongo, V., Amor, A.M., Stöcklin, R., Anderson, A.J., Harvey, A.L., Engström, Å., Wernstedt, C., Karlsson, E., 1995. Characterization of a potassium channel toxin from the Caribbean sea anemone Stichodactyla helianthus. Toxicon 33, 603–613. https://doi.org/10.1016/0041-0101(95)00013-CDang, B., Kubota, T., Mandal, K., Kent, S.B.H., 2013. Chemical Synthesis and High Resolution X-ray Structure of ShK Toxin by Racemic Crystallography. Biopolymers 100, 229. https://doi.org/10.2210/PDB4LFQ/PDBDauplais, M., Lecoq, A., Song, J., Cotton, J., Jamin, N., Gilquin, B., Roumestand, C., Vita, C., de Medeiros, C.L.C., Rowan, E.G., Harvey, A.L., Ménez, A., 1997. On the Convergent Evolution of Animal Toxins. J. Biol. Chem. 272, 4302–4309. https://doi.org/10.1074/jbc.272.7.4302de Amorim, R.C., Hennig, C., 2015. Recovering the number of clusters in data sets with noise features using feature rescaling factors. Inf. Sci. (Ny). 324, 126–145. https://doi.org/10.1016/j.ins.2015.06.039Demšar, J., Curk, T., Erjavec, A., Gorup, Č., Hočevar, T., Milutinovič, M., Možina, M., Polajnar, M., Toplak, M., Starič, A., Štajdohar, M., Umek, L., Žagar, L., Žbontar, J., Žitnik, M., Zupan, B., 2013. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 14, 2349–2353.Dolinsky, T.J., Czodrowski, P., Li, H., Nielsen, J.E., Jensen, J.H., Klebe, G., Baker, N.A., 2007. PDB2PQR: Expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35, W522–W525. https://doi.org/10.1093/nar/gkm276Dubuisson, M.-P., Jain, A.K., 1994. A modified Hausdorff distance for object matching. Proc. 12th Int. Conf. Pattern Recognit. 1, 566–568. https://doi.org/10.1109/ICPR.1994.576361Fefeu, S., Bouaziz, S., Huet, J.C., Pernollet, J.C., Guittet, E., 1997. Three-dimensional solution structure of beta cryptogein, a beta elicitin secreted by a phytopathogenic fungus Phytophthora cryptogea. Protein Sci. 6, 2279–84. https://doi.org/10.1002/pro.5560061101Fry, B., 2005. From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 15, 403–420. https://doi.org/10.1101/gr.3228405Fry, B.G., Vidal, N., Norman, J.A., Vonk, F.J., Scheib, H., Ramjan, S.F.R., Kuruppu, S., Fung, K., Hedges, S.B., Richardson, M.K., Hodgson, W.C., Ignjatovic, V., Summerhayes, R., Kochva, E., 2006. Early evolution of the venom system in lizards and snakes. Nature 439, 584–588. https://doi.org/10.1038/nature04328Geng, W., Krasny, R., 2013. A treecode-accelerated boundary integral Poisson-Boltzmann solver for electrostatics of solvated biomolecules. J. Comput. Phys. 247, 62–78. https://doi.org/10.1016/j.jcp.2013.03.056Guex, N., Peitsch, M.C., 1997. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis 18, 2714–2723. https://doi.org/10.1002/elps.1150181505Huang, C.H., Shiu, J.H., Chang, Y.T., Jeng, W.Y., Chuang, W.J., n.d. Effects of the regions adjacent to the RGD motif in disintegrins on their inhibitory activities and structures. TO BE Publ. https://doi.org/10.2210/PDB4R5R/PDBJurrus, E., Engel, D., Star, K., Monson, K., Brandi, J., Felberg, L.E., Brookes, D.H., Wilson, L., Chen, J., Liles, K., Chun, M., Li, P., Gohara, D.W., Dolinsky, T., Konecny, R., Koes, D.R., Nielsen, J.E., Head-Gordon, T., Geng, W., Krasny, R., Wei, G.-W., Holst, M.J., McCammon, J.A., Baker, N.A., 2018. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 27, 112–128. https://doi.org/10.1002/pro.3280Kordiš, D., Gubenšek, F., 2000. Adaptive evolution of animal toxin multigene families. Gene 261, 43–52. https://doi.org/10.1016/S0378-1119(00)00490-XLampy, 2008. Electrostatic Potential Maps 25, 1–13.Liebscher, V., 2015. gromovlab: Gromov-Hausdorff Type Distances for Labeled Metric Spaces.Lin, T.-H., Yang, R.-S., Tu, H.-J., Liou, H.-C., Lin, Y.-M., Chuang, W.-J., Fu, W.-M., 2017. Inhibition of osteoporosis by the αvβ3 integrin antagonist of rhodostomin variants. Eur. J. Pharmacol. 804, 94–101. https://doi.org/10.1016/j.ejphar.2017.03.019Lockwood, S., Krishnamoorthy, B., 2014. Topological Features In Cancer Gene Expression Data 108–119.Mémoli, F., 2007. On the use of Gromov-Hausdorff Distances for Shape Comparison. Proc. Symp. Point Based Graph. 81–90. https://doi.org/10.2312/SPBG/SPBG07/081-090Mémoli, F., Sapiro, G., 2004. Comparing point clouds, in: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing - SGP ’04. ACM Press, New York, New York, USA, p. 32. https://doi.org/10.1145/1057432.1057436Norton, R.S., Pennington, M.W., Wulff, H., 2004. Potassium channel blockade by the sea anemone toxin ShK for the treatment of multiple sclerosis and other autoimmune diseases. Curr. Med. Chem. 11, 3041–3052. https://doi.org/10.2174/0929867043363947Olivera, B.M., Teichert, R.W., 2007. Diversity of the neurotoxic Conus peptides: a model for concerted pharmacological discovery. Mol. Interv. 7, 251–60. https://doi.org/10.1124/mi.7.5.7Puillandre, N., Duda, T.F., Meyer, C., Olivera, B.M., Bouchet, P., 2015. One, four or 100 genera? A new classification of the cone snails. J. Molluscan Stud. 81, 1–23. https://doi.org/10.1093/mollus/eyu055R Core Team, n.d. R: A Language and Environment for Statistical Computing.Rodrigues, M.L., Archer, M., Martel, P., Miranda, S., Thomaz, M., Enguita, F.J., Baptista, R.P., Pinho E Melo, E., Sousa, N., Cravador, A., Carrondo, M.A., 2006. Crystal structures of the free and sterol-bound forms of β-cinnamomin. Biochim. Biophys. Acta - Proteins Proteomics 1764, 110–121. https://doi.org/10.1016/j.bbapap.2005.09.008Rousseeuw, P.J., 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7Shiu, J.H., Chen, C.Y., Chen, Y.C., Chang, Y.T., Chang, Y.S., Huang, C.H., Chuang, W.J., n.d. Design of Integrin AlphaVbeta3-Specific Disintegrin for Cancer Therapy. TO BE Publ. https://doi.org/10.2210/PDB3UCI/PDBTan, N., Ponnudurai, G., Lumpur, K., 1996. Calloselasma rhodostoma 15, 1–17.Tasi, G., Pálinkó, I., Nyerges, L., Fejes, P., Förster, H., 1993. Calculation of Electrostatic Potential Maps and Atomic Charges for Large Molecules. J. Chem. Inf. Comput. Sci. 33, 296–299. https://doi.org/10.1021/ci00013a003Voet, A., Berenger, F., Zhang, K.Y.J., 2013. Electrostatic similarities between protein and small molecule ligands facilitate the design of protein-protein interaction inhibitors. PLoS One 8, e75762. https://doi.org/10.1371/journal.pone.0075762Yu, L.M., 1995. Elicitins from Phytophthora and basic resistance in tobacco. Proc. Natl. Acad. Sci. U. S. A. 92, 4088–94.Mejía Guerra, M.K., Estévez-Bretón Riveros, C.M., Lareo, L.R., 2001. Analogía de árboles obtenidos por distancias genéticas y por distancias geométricas. Pontificia Universidad Javeriana.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf5023387https://bonga.unisimon.edu.co/bitstreams/49c6ad7b-1dc3-4020-b84f-0c33aef243f6/downloadd6046544090c1ddf92f1bdf8141b3622MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bonga.unisimon.edu.co/bitstreams/d2b9c6ea-1922-4897-b27f-8498664b58bb/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTFunctional analysis of toxins by clustering of their electrostatic potentials.pdf.txtFunctional analysis of toxins by clustering of their electrostatic potentials.pdf.txtExtracted texttext/plain34139https://bonga.unisimon.edu.co/bitstreams/34f4030d-7557-4b13-b275-3d54a3e3fa99/download5e360e00745a614a1999764c1c7f180bMD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain35313https://bonga.unisimon.edu.co/bitstreams/70f8f143-6571-4916-aa6c-17fdf74a4edb/downloadf5c4ba9c4efe1664889964a1c9d5e658MD55THUMBNAILFunctional analysis of toxins by clustering of their electrostatic potentials.pdf.jpgFunctional analysis of toxins by clustering of their electrostatic potentials.pdf.jpgGenerated Thumbnailimage/jpeg1902https://bonga.unisimon.edu.co/bitstreams/03546daa-8479-4c6c-9e57-7718b5251439/downloadc3743cccc1193d7cc6d07f37de5decfaMD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg6251https://bonga.unisimon.edu.co/bitstreams/84e6a00e-ede7-47d5-a07b-cdcb137692f3/downloada38f61871b2d0e3922d52d33df407583MD5620.500.12442/2552oai:bonga.unisimon.edu.co:20.500.12442/25522024-07-25 03:45:03.067restrictedhttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |