Interest rates calculation in certain ordinary annuities
Certain annuities are annuities whose payments occur on fixed dates; while a certain ordinary annuity is one in which payments are made at the end of each established period. The calculation of the interest rate, which governs the certain ordinary annuity, involves the use of a non-analytical equati...
- Autores:
-
Flórez, M
Vera, M
Salazar-Torres, J
Huérfano, Y
Gelvez-Almeida, E
Valbuena, O
Vera, M I
Aranguen, M
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/5068
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/5068
- Palabra clave:
- Mathematical model
Interest rate
Linear interpolation technique
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_73317b43cc701c7d5c53549c684723f2 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/5068 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Interest rates calculation in certain ordinary annuities |
title |
Interest rates calculation in certain ordinary annuities |
spellingShingle |
Interest rates calculation in certain ordinary annuities Mathematical model Interest rate Linear interpolation technique |
title_short |
Interest rates calculation in certain ordinary annuities |
title_full |
Interest rates calculation in certain ordinary annuities |
title_fullStr |
Interest rates calculation in certain ordinary annuities |
title_full_unstemmed |
Interest rates calculation in certain ordinary annuities |
title_sort |
Interest rates calculation in certain ordinary annuities |
dc.creator.fl_str_mv |
Flórez, M Vera, M Salazar-Torres, J Huérfano, Y Gelvez-Almeida, E Valbuena, O Vera, M I Aranguen, M |
dc.contributor.author.none.fl_str_mv |
Flórez, M Vera, M Salazar-Torres, J Huérfano, Y Gelvez-Almeida, E Valbuena, O Vera, M I Aranguen, M |
dc.subject.eng.fl_str_mv |
Mathematical model Interest rate Linear interpolation technique |
topic |
Mathematical model Interest rate Linear interpolation technique |
description |
Certain annuities are annuities whose payments occur on fixed dates; while a certain ordinary annuity is one in which payments are made at the end of each established period. The calculation of the interest rate, which governs the certain ordinary annuity, involves the use of a non-analytical equation that requires the application of numerical techniques to obtain the value of the aforementioned rate. The literature indicates that any of these techniques requires one or several numerical values for initialization, which generally are estimated using trial techniques, graphical methods or values present in pre-established tables. Through this article, a new robust methodology is proposed that calculates the useful numerical values to initialize the linear interpolation technique, which is used to calculate the interest rate linked to the certain ordinary annuity. The proposed methodology generates initialization values, one by default and the other by excess, which allow us to limit the value of the certain ordinary annuity interest rate considered. Finally, we generated a new strategy that constitutes a novel mathematical model for interest rates calculation in the context of certain ordinary annuity. The percentage relative error obtained indicates the excellent performance of the aforementioned mathematical model. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-03-26T21:02:31Z |
dc.date.available.none.fl_str_mv |
2020-03-26T21:02:31Z |
dc.type.eng.fl_str_mv |
article |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.driver.eng.fl_str_mv |
article |
dc.identifier.issn.none.fl_str_mv |
17426596 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/5068 |
identifier_str_mv |
17426596 |
url |
https://hdl.handle.net/20.500.12442/5068 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
pdf |
dc.publisher.eng.fl_str_mv |
IOP Publishing |
dc.source.eng.fl_str_mv |
Journal of Physics: Conference Series Vol. 1414 (2019) |
institution |
Universidad Simón Bolívar |
dc.source.uri.eng.fl_str_mv |
https://iopscience.iop.org/article/10.1088/1742-6596/1414/1/012009/meta |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/bf5d4181-ae91-4395-a1c8-86cf7b10e957/download https://bonga.unisimon.edu.co/bitstreams/438d7cf0-2690-4864-93bc-6782f7e23011/download https://bonga.unisimon.edu.co/bitstreams/a9279367-a446-45c8-8046-b06c049cde3e/download https://bonga.unisimon.edu.co/bitstreams/637d4973-7ca4-4ddd-bc0f-060fb10f292c/download https://bonga.unisimon.edu.co/bitstreams/ee274932-b45a-4ce5-8459-098f1ad5d859/download https://bonga.unisimon.edu.co/bitstreams/e4a74c94-eda4-4f6b-8015-2c365efc50ad/download https://bonga.unisimon.edu.co/bitstreams/1337ef5a-94a8-4936-b744-5440999a0848/download |
bitstream.checksum.fl_str_mv |
99cb3f8e51e2bba63da1475092a7b7bd 4460e5956bc1d1639be9ae6146a50347 733bec43a0bf5ade4d97db708e29b185 71924638e686a4bf6a406cac63a1103e c5f9fdeecd8a5ead99aab39a200242e7 4b55d2972ece74dd8f61f04eb2cd5192 8eba1f82ef62897c5eed2ef4f151caf1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076137000665088 |
spelling |
Flórez, Me9d2db3a-788b-4cf7-a267-95983e59762aVera, M847eada8-99d3-4ff1-a613-ae3f62c30f9eSalazar-Torres, J40a2a6c9-3e39-4994-9b5a-1c6112bd8000Huérfano, Y001cc35e-75ac-48b8-9fd0-3c22464ff80fGelvez-Almeida, E55062614-d175-4da1-834a-d7e54dcc92deValbuena, O4286f2e0-ce46-49ce-a106-bd00c21a76e9Vera, M I4c675edd-c7b6-4fee-87e2-feb90cfc363eAranguen, M9a7c5ee0-5d86-4677-93c4-ac4f76036cd72020-03-26T21:02:31Z2020-03-26T21:02:31Z201917426596https://hdl.handle.net/20.500.12442/5068Certain annuities are annuities whose payments occur on fixed dates; while a certain ordinary annuity is one in which payments are made at the end of each established period. The calculation of the interest rate, which governs the certain ordinary annuity, involves the use of a non-analytical equation that requires the application of numerical techniques to obtain the value of the aforementioned rate. The literature indicates that any of these techniques requires one or several numerical values for initialization, which generally are estimated using trial techniques, graphical methods or values present in pre-established tables. Through this article, a new robust methodology is proposed that calculates the useful numerical values to initialize the linear interpolation technique, which is used to calculate the interest rate linked to the certain ordinary annuity. The proposed methodology generates initialization values, one by default and the other by excess, which allow us to limit the value of the certain ordinary annuity interest rate considered. Finally, we generated a new strategy that constitutes a novel mathematical model for interest rates calculation in the context of certain ordinary annuity. The percentage relative error obtained indicates the excellent performance of the aforementioned mathematical model.pdfengIOP PublishingAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Journal of Physics: Conference SeriesVol. 1414 (2019)https://iopscience.iop.org/article/10.1088/1742-6596/1414/1/012009/metaMathematical modelInterest rateLinear interpolation techniqueInterest rates calculation in certain ordinary annuitiesarticlearticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Portus G 1997 Matemáticas financieras (Bogotá: McGraw Hill)Meza J 2017 Matemáticas financieras aplicadas (Bogotá: Ecoe Ediciones)Baca G 2010 Fundamentos de ingeniería económica (México: Mc Graw-Hill)Mena R 2017 Introducción al estudio de las matemáticas financieras (Barranquilla: Ediciones Universidad Simón Bolívar)González G 1998 Matemática financiera: Intereses y anualidades ciertas (México: McGrawHill)Cánovas R 2004 Matemáticas financieras, fundamentos y aplicaciones (México: Ediciones Trillas)Burden R and Faires D 2010 Numerical analysis (Mexico: Cengage Learning)Smola A 1998 Learning with kernels (Germany: Technische Universität Berlin)Gunn S 1998 Support vector machines for classification and regression (Southampton: Southampton University)Suykens J, Gestel T and Brabanter J 2002 Least squares support vector machines Neural Processing Letters 9(3) 293Hamming R 1973 Numerical methods for scientist and engineers (New York: Dover Publications)Meijering E 2002 A chronology of interpolation: From ancient astronomy to modern signal and image processing Proceedings of the IEEE 90(3) 319ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf480685https://bonga.unisimon.edu.co/bitstreams/bf5d4181-ae91-4395-a1c8-86cf7b10e957/download99cb3f8e51e2bba63da1475092a7b7bdMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/438d7cf0-2690-4864-93bc-6782f7e23011/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/a9279367-a446-45c8-8046-b06c049cde3e/download733bec43a0bf5ade4d97db708e29b185MD53TEXTInterest_rates_calculation.pdf.txtInterest_rates_calculation.pdf.txtExtracted texttext/plain17638https://bonga.unisimon.edu.co/bitstreams/637d4973-7ca4-4ddd-bc0f-060fb10f292c/download71924638e686a4bf6a406cac63a1103eMD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain18190https://bonga.unisimon.edu.co/bitstreams/ee274932-b45a-4ce5-8459-098f1ad5d859/downloadc5f9fdeecd8a5ead99aab39a200242e7MD56THUMBNAILInterest_rates_calculation.pdf.jpgInterest_rates_calculation.pdf.jpgGenerated Thumbnailimage/jpeg1277https://bonga.unisimon.edu.co/bitstreams/e4a74c94-eda4-4f6b-8015-2c365efc50ad/download4b55d2972ece74dd8f61f04eb2cd5192MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg3210https://bonga.unisimon.edu.co/bitstreams/1337ef5a-94a8-4936-b744-5440999a0848/download8eba1f82ef62897c5eed2ef4f151caf1MD5720.500.12442/5068oai:bonga.unisimon.edu.co:20.500.12442/50682024-08-14 21:53:25.93http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |