Water cycle algorithm: implementation and analysis of solutions to the bi-bjective travelling salesman problem
This research is an implementation of the Water Cycle Algorithm (WCA) to solve the biobjective Travelling Salesman Problem, based on the kroAB100 problem in the TSPLIB library, and compare its performance to an alternative metaheuristic algorithm (MO Ant Colony BiCriterionAnt). Metrics such as gener...
- Autores:
-
Pimentel, Jairo
Ardila Hernandez, Carlos Julio
Niño, Elías
Jabba Molinares, Daladier
Ruiz-Rangel, Jonathan
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/3973
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/3973
- Palabra clave:
- Finite Deterministic Automaton
Genetic Algorithm
Water Cycle Algorithm
Travelling Salesman Problem
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_731fa4cfddef9df1945d9948754a6f51 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/3973 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Water cycle algorithm: implementation and analysis of solutions to the bi-bjective travelling salesman problem |
title |
Water cycle algorithm: implementation and analysis of solutions to the bi-bjective travelling salesman problem |
spellingShingle |
Water cycle algorithm: implementation and analysis of solutions to the bi-bjective travelling salesman problem Finite Deterministic Automaton Genetic Algorithm Water Cycle Algorithm Travelling Salesman Problem |
title_short |
Water cycle algorithm: implementation and analysis of solutions to the bi-bjective travelling salesman problem |
title_full |
Water cycle algorithm: implementation and analysis of solutions to the bi-bjective travelling salesman problem |
title_fullStr |
Water cycle algorithm: implementation and analysis of solutions to the bi-bjective travelling salesman problem |
title_full_unstemmed |
Water cycle algorithm: implementation and analysis of solutions to the bi-bjective travelling salesman problem |
title_sort |
Water cycle algorithm: implementation and analysis of solutions to the bi-bjective travelling salesman problem |
dc.creator.fl_str_mv |
Pimentel, Jairo Ardila Hernandez, Carlos Julio Niño, Elías Jabba Molinares, Daladier Ruiz-Rangel, Jonathan |
dc.contributor.author.none.fl_str_mv |
Pimentel, Jairo Ardila Hernandez, Carlos Julio Niño, Elías Jabba Molinares, Daladier Ruiz-Rangel, Jonathan |
dc.subject.eng.fl_str_mv |
Finite Deterministic Automaton Genetic Algorithm Water Cycle Algorithm Travelling Salesman Problem |
topic |
Finite Deterministic Automaton Genetic Algorithm Water Cycle Algorithm Travelling Salesman Problem |
description |
This research is an implementation of the Water Cycle Algorithm (WCA) to solve the biobjective Travelling Salesman Problem, based on the kroAB100 problem in the TSPLIB library, and compare its performance to an alternative metaheuristic algorithm (MO Ant Colony BiCriterionAnt). Metrics such as generational distance, inverse generational distance, spacing, dispersion and maximum dispersion were used to compare the two algorithms. Results demonstrate that the Water Cycle Algorithm generates superior solutions to this category of problem according to most of the metrics. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-09-13T22:13:10Z |
dc.date.available.none.fl_str_mv |
2019-09-13T22:13:10Z |
dc.date.issued.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
09740635 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/3973 |
identifier_str_mv |
09740635 |
url |
https://hdl.handle.net/20.500.12442/3973 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_16ec |
dc.publisher.eng.fl_str_mv |
International Journal of Artificial Intelligence |
dc.source.eng.fl_str_mv |
Vol. 17 No. 2 (2019) October International Journal of Artificial Intelligence |
institution |
Universidad Simón Bolívar |
dc.source.uri.eng.fl_str_mv |
www.ceser.in/ceserp/index.php/ijai/article/view/6256 |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/bc75e756-a4a8-4b27-96e8-a7f25dbe03b3/download https://bonga.unisimon.edu.co/bitstreams/805afe67-eee4-460b-9d4d-7a9dda723345/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 3fdc7b41651299350522650338f5754d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076109000540160 |
spelling |
Pimentel, Jairo60583031-ac62-4348-8353-1507b0ea4068Ardila Hernandez, Carlos Julio6376bedb-3192-4777-9e34-c269ee81d567Niño, Elíasa6c57034-2f68-46b9-9038-cee1e9608044Jabba Molinares, Daladiera6449168-983a-4292-aef6-a59465add02aRuiz-Rangel, Jonathan6bcede93-7c56-43e9-af54-4ace50e87aad2019-09-13T22:13:10Z2019-09-13T22:13:10Z201909740635https://hdl.handle.net/20.500.12442/3973This research is an implementation of the Water Cycle Algorithm (WCA) to solve the biobjective Travelling Salesman Problem, based on the kroAB100 problem in the TSPLIB library, and compare its performance to an alternative metaheuristic algorithm (MO Ant Colony BiCriterionAnt). Metrics such as generational distance, inverse generational distance, spacing, dispersion and maximum dispersion were used to compare the two algorithms. Results demonstrate that the Water Cycle Algorithm generates superior solutions to this category of problem according to most of the metrics.engInternational Journal of Artificial IntelligenceAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_16ecVol. 17 No. 2 (2019) OctoberInternational Journal of Artificial Intelligencewww.ceser.in/ceserp/index.php/ijai/article/view/6256Finite Deterministic AutomatonGenetic AlgorithmWater Cycle AlgorithmTravelling Salesman ProblemWater cycle algorithm: implementation and analysis of solutions to the bi-bjective travelling salesman problemarticlehttp://purl.org/coar/resource_type/c_6501Bianchi, L., Dorigo, M., Gambardella, L. M. and Gutjahr, W. J. 2009. A survey on metaheuristics for stochastic combinatorial optimization, Nat Comput, Springer, Netherlands 8(11047): 239–287.Bozorg Haddad, O., Moravej, M. and Lo´ aiciga, H. A. 2015. Application of the water cycle algorithm to the optimal operation of reservoir systems, Journal of Irrigation and Drainage Engineering, American Society of Civil Engineers 142(5): 4001–4064.Butterworth-Heinemann 2019. Nature-inspired optimization algorithms for fuzzy controlled servo systems, Elsevier, Oxford, UK 8(11047): 239–287.Cagnina, L. C. 2010. Optimización Mono y Multiobjetivo a través de una Heurística de Inteligencia Colectiva, PhD thesis, Universidad Nacional de San Luis,San Luis, Argentina.Eskandar, H., Sadollah, A., Bahreininejad, A. and Hamdi, M. 2012. Water cycle algorithm a novel metaheuristic optimization method for solving constrained engineering optimization problems, Computers and Structures 110111: 151–166Heidari, A. A., Abbaspour, R. A. and Jordehi, A. R. 2017. An efficient chaotic water cycle algorithm for optimization tasks, Neural Computing and Applications, Springer, London 28(1): 57–85.Kallrath, J., Rebennack, S., Kallrath, J. and Kusche, R. 2014. Solving real-world cutting stockproblems in the paper industry: Mathematical approaches, experience and challenges, European Journal of Operational Research 238(1): 374–389.Ke, L., Zhang, Q. and Battiti, R. 2013. Moea/d-aco: A multiobjective evolutionary algorithm using decomposition and ant colony, IEEE Transactions on Cybernetics 43(6): 1845–1859.Larra˜naga, P., Kuijpers, C. M., Murga, R. H., Inza, I. and Dizdarevic, S. 1999. Genetic algorithms for the travelling salesman problem: A review of representations and operators, Artificial Intelligence Review: An International Science and Engineering Journal 13(2): 129–170.Lopez-Ibanez, M. and Stuetzle, T. 2012. The automatic design of multi-objective ant colony optimization algorithms, IEEE Transactions on Evolutionary Computation, the IRIDIA laboratory, CoDE, Universite libre de Bruxelles, 1050 Brussels, Belgium 16(6): 861–875.Montemanni, R., Barta, J., Mastrolilli, M. and Gambardell, L. M. 2007. The robust traveling salesman problem with interval data, Institute for Operations Research and the Management Sciences, INFORMS 41(3): 366–381.Moujahid, A., In ˜ aki, I. and Larra˜naga, P. 2008. Tema 2. algoritmos gen´ eticos, Departamento de Ciencias de la Computaci´on e Inteligencia Artificial, Universidad del Pa´ıs, VascoEuskal Herriko Unibertsitatea pp. 1–33.Osaba, E., Del Ser, J., Sadollah, A., Nekane, B. M. and Camacho, D. 2018. A discrete water cycle algorithm for solving the symmetric and asymmetric traveling salesman problem, Applied Soft Computing 71: 277–290.Paquete, L., Chiarandini, M. and Stutzle, T. 2004. Pareto local optimum sets in the biobjective traveling salesman problem: An experimental study, Metaheuristics for Multiobjective Optimisation: Lecture Notes in Economics and Mathematical Systems, Springer, Berlin, Heidelberg 35: 177–199.Reinelt, G. 1991. Tspliba traveling salesman problem library, ORSA Journal on Computing, Operations Research Society of America, INFORMS 3(4): 376–384.Sadollah, A., Eskandar, H. and Bahreininejad, A. 2013. Weight optimization of truss structures using water cycle algorithm, International journal of optimization in civil engineering,Faculty of Engineering, Semnan University, Semnan, Iran 3(1): 115–129.Sadollah, A., Eskandar, H., Bahreininejad, A. and Kim, J. H. 2015a. Water cycle algorithm for solving multi-objective optimization problems, Soft Computing, Springer, Berlin, Heidelberg 19(9): 2587–2603.Sadollah, A., Eskandar, H., Bahreininejad, A. and Kim, J. H. 2015b. Water cycle algorithm with evaporation rate for solving constrained and unconstrained optimization problems, Applied Soft Computing 30: 58–71.Sadollah, A., Eskandar, H., Lee, H. M. and Yoo, D. G. 2016. Water cycle algorithm: A detailed standard code, SoftwareX 5: 37–43.Sadollah, A., Kim, J. H., Eskandar, H. and Yoo, D. G. 2013. Sizing optimization of sandwich panels having prismatic core using water cycle algorithm, Intelligent Systems (GCIS), 2013 Fourth Global Congress on IEEE, IEEE Conference, Hong Kong, China pp. 325–328.Tenne, Y. and Goh, C. 2010. Computational intelligence in optimization: applications and implementations, Adaptation, Learning, and Optimization (Book 7), Springer-Verlan, Berlin, Heidelberg 7: 359–380.The Traveling Salesman Problem 02 of November of 2016. http://www.math.uwaterloo.ca/tsp/apps/index.html.Umbarkar, A. J. and Sheth, P. D. 2015. Crossover operators in genetic algorithms: a review, ICTACT International Journal of Computer Applications, Foundation of Computer Science (FCS), NY, USA 6(1): 1083–1092.Vaˇsˇc´ak-J´an 2012. Adaptation of fuzzy cognitive maps by migration algorithms, Emerald Group Publishing Limited 41(3-4): 429–443.Vrkalovic, S., Lunca, E. C. and Borlea, I. D. 2018. Model-free sliding mode and fuzzy controllers for reverse osmosis desalination plants, International Journal of Artificial Intelligence 16(2): 208–222.Zhang, Z., Gao, C., Lu, Y., Liu, Y. and Liang, M. 2016. Multi-objective ant colony optimization based on the physarum-inspired mathematical model for bi-objective traveling salesman problems, PLoS ONE, Kyushu University, JAPAN 11(1): 1–23.Zitzler, E., Deb, K. and Thiele, L. 2000. Comparison of multiobjective evolutionary algorithms: Empirical results, Evolutionary computation, MIT Press Cambridge, MA, USA 8(2): 173– 195.Hasanien, H. M. and Matar, M. 2018. Water cycle algorithm-based optimal control strategy for efficient operation of an autonomous microgrid, IET Generation Transmission and Distribution 12(21): 5739–5746.CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/bc75e756-a4a8-4b27-96e8-a7f25dbe03b3/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/805afe67-eee4-460b-9d4d-7a9dda723345/download3fdc7b41651299350522650338f5754dMD5320.500.12442/3973oai:bonga.unisimon.edu.co:20.500.12442/39732024-08-14 21:52:30.939http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalmetadata.onlyhttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4= |