Tomografía computarizada por rayos X en cardiología

La tomografía computarizada por rayos X es una modalidad utilizada rutinariamente en la práctica clínica. Esta modalidad genera un conjunto de imágenes en bidimensionales, cada una de las cuales representa una rodaja que incluye información sobre la anatomía interna del paciente. Las imágenes tridim...

Full description

Autores:
Bravo, Antonio J.
Roa, Felida
Vera, Miguel
Contreras-Velásquez, Julio
Huérfano, Yoleidy
Chacón, José
Wilches-Durán, Sandra
Graterol-Rivas, Modesto
Riaño-Wilches, Daniela
Rojas, Joselyn
Bermúdez, Valmore
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
spa
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/1846
Acceso en línea:
http://hdl.handle.net/20.500.12442/1846
Palabra clave:
Tomografía computarizada
Rayos X
Cardiología
Computerized tomography
X ray
Cardiology
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_72da135de39b34913b571680090fb486
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/1846
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.spa.fl_str_mv Tomografía computarizada por rayos X en cardiología
dc.title.alternative.eng.fl_str_mv X-ray computed tomography in cardiology
title Tomografía computarizada por rayos X en cardiología
spellingShingle Tomografía computarizada por rayos X en cardiología
Tomografía computarizada
Rayos X
Cardiología
Computerized tomography
X ray
Cardiology
title_short Tomografía computarizada por rayos X en cardiología
title_full Tomografía computarizada por rayos X en cardiología
title_fullStr Tomografía computarizada por rayos X en cardiología
title_full_unstemmed Tomografía computarizada por rayos X en cardiología
title_sort Tomografía computarizada por rayos X en cardiología
dc.creator.fl_str_mv Bravo, Antonio J.
Roa, Felida
Vera, Miguel
Contreras-Velásquez, Julio
Huérfano, Yoleidy
Chacón, José
Wilches-Durán, Sandra
Graterol-Rivas, Modesto
Riaño-Wilches, Daniela
Rojas, Joselyn
Bermúdez, Valmore
dc.contributor.author.none.fl_str_mv Bravo, Antonio J.
Roa, Felida
Vera, Miguel
Contreras-Velásquez, Julio
Huérfano, Yoleidy
Chacón, José
Wilches-Durán, Sandra
Graterol-Rivas, Modesto
Riaño-Wilches, Daniela
Rojas, Joselyn
Bermúdez, Valmore
dc.subject.spa.fl_str_mv Tomografía computarizada
Rayos X
Cardiología
topic Tomografía computarizada
Rayos X
Cardiología
Computerized tomography
X ray
Cardiology
dc.subject.eng.fl_str_mv Computerized tomography
X ray
Cardiology
description La tomografía computarizada por rayos X es una modalidad utilizada rutinariamente en la práctica clínica. Esta modalidad genera un conjunto de imágenes en bidimensionales, cada una de las cuales representa una rodaja que incluye información sobre la anatomía interna del paciente. Las imágenes tridimensionales son obtenidas a partir de proyecciones radiológicas mediante técnicas de reconstrucción. Las proyecciones son obtenidas por la exposición del objeto a radiaciones de rayos X según distintos ángulos y por la medición del grado de absorción del haz que atraviesa al objeto. El presente artículo muestra la aplicación de esta tecnología de imágenes médicas y sus avances en cardiología.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017
dc.date.accessioned.none.fl_str_mv 2018-03-12T14:41:49Z
dc.date.available.none.fl_str_mv 2018-03-12T14:41:49Z
dc.type.spa.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 18564550
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/1846
identifier_str_mv 18564550
url http://hdl.handle.net/20.500.12442/1846
dc.language.iso.spa.fl_str_mv spa
language spa
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.spa.fl_str_mv Cooperativa servicios y suministros 212518 RS
dc.source.spa.fl_str_mv Revista Latinoamericana de Hipertensión
Vol. 12, No.2 (2017)
institution Universidad Simón Bolívar
dc.source.uri.none.fl_str_mv https://www.redalyc.org/articulo.oa?id=170252186003
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/26fae9ae-d9c4-48ba-98f1-f960ee628e58/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv DSpace UniSimon
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814076029244801024
spelling Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Bravo, Antonio J.ebf65d70-b96f-4faf-88f7-d30c02ee6858-1Roa, Felida478e540f-4d38-4c3f-af39-32c2f88650b9-1Vera, Miguelc485e4e3-5bbd-4d00-8ec7-e5bc8a0a21e3-1Contreras-Velásquez, Julio4a0bae0a-e2a1-4f4b-a25e-afd4c5e502d1-1Huérfano, Yoleidy769899ba-e6a1-4144-95c2-ff4614f93578-1Chacón, Joséd82f346e-be8f-4aca-b164-14fc6d0a417c-1Wilches-Durán, Sandra57727544-0054-45e6-997c-6d75c266cea0-1Graterol-Rivas, Modestoff2023fd-31e4-4245-be4a-72ed5ee1b3ed-1Riaño-Wilches, Daniela4a1c47a2-defc-4768-8443-bc853cff374a-1Rojas, Joselyn2aa91570-0516-424d-8f76-25cd7b39be6e-1Bermúdez, Valmore29f9aa18-16a4-4fd3-8ce5-ed94a0b8663a-12018-03-12T14:41:49Z2018-03-12T14:41:49Z201718564550http://hdl.handle.net/20.500.12442/1846La tomografía computarizada por rayos X es una modalidad utilizada rutinariamente en la práctica clínica. Esta modalidad genera un conjunto de imágenes en bidimensionales, cada una de las cuales representa una rodaja que incluye información sobre la anatomía interna del paciente. Las imágenes tridimensionales son obtenidas a partir de proyecciones radiológicas mediante técnicas de reconstrucción. Las proyecciones son obtenidas por la exposición del objeto a radiaciones de rayos X según distintos ángulos y por la medición del grado de absorción del haz que atraviesa al objeto. El presente artículo muestra la aplicación de esta tecnología de imágenes médicas y sus avances en cardiología.X-ray computed tomography is a modality routinely used in clinical practice. This modality generates a set of two-dimensional images, each representing a slice that includes information about the patient’s anatomy. Three-dimensional images are obtained from radiological projections using reconstruction techniques. The projections are obtained by exposing the object to X-ray radiation at different angles and by measuring the degree of absorption of the beam passing through the object. The present article shows the application of this technology of medical images and its advances in cardiology.spaCooperativa servicios y suministros 212518 RSRevista Latinoamericana de HipertensiónVol. 12, No.2 (2017)https://www.redalyc.org/articulo.oa?id=170252186003Tomografía computarizadaRayos XCardiologíaComputerized tomographyX rayCardiologyTomografía computarizada por rayos X en cardiologíaX-ray computed tomography in cardiologyarticlehttp://purl.org/coar/resource_type/c_6501Hajnal JV, Hill DLG, Hawkes DJ. Medical Image Registration. Philadelphia: CRC Press LLC; 2001.Boyd DP, Farmer DW. (1980). Cardiac computed tomography. En: Collins S, Skorton D. eds. Cardiac Imaging and Image Processing. New York: McGraw Hill Book Company; 1980:57–87.Robb RA, Morin ML. Principles and instrumentation for dynamic X–ray computed tomography. En: Marcus M, Schelbert H, Skorton D, Wolf G. editors: Cardiac Imaging. A Companion to Braunwald’s Heart Disease. Philadelphia: W.B. Saunders Company; 1991:634–668.Boyd DP, Haugland C. Recent progress in electron beam tomography. Medical Imaging Technology. 1993; 11(4):578–585.Budoff MJ, Georgiou D, Brody A, Agatston AS, Kennedy J, Wolfkiel C, Rich S. Ultrafast computed tomography as a diagnostic modality in the detection of coronary artery disease. Circulation. 1996; 93(5): 898-904.Moshage WEL, Achenbach S, Seese B, Bachmann K. y Kirchgeorg M. Coronary artery stenoses: Three–dimensional imaging with electrocardiographically triggered, contrast agent–enhanced, electron–beam CT. Radiology. 1995; 196(3):707–714.Arad Y, Spadaro LA, Goodman K, Lledo-Perez A, Sherman S, Lerner G, Guerci AD. Predictive value of electron beam computed tomography of the coronary arteries. Circulation. 1996; 93(11):1951–1953.Kalender WA, Sissler W, Klotz E, Vock P. Spiral volumetric CT with single– breath–hold technique, continuos transport, and continuos scanner rotation. Radiology. 1990; 176(1):181–183.Heiken JP, Brink JA, Vannier MW. Spiral (helical) CT. Radiology. 1993; 189(3):647–656.Baskin KM, Stanford W, Thompsom BH, Tajik J, Heery SD, Hoffman EA. Helical versus electron–beam CT in assessment of coronary artery calcification. Radiology. 1995; 197(1):182–185.Becker C, Jakobs TF, Aydemir, S. Helical and single–slice conventional CT versus electron–beam CT for quantification of coronary artery calcification. American Journal of Roentgenology. 2000; 174(1):1–5.Eggen DA, Strong JP, McGill HC. Coronary calcification: relationship to clinically significant coronary lesions and race, sex, and topographic distribution. Circulation. 1965; 32(5):948–955.Mochizuki T, Murase K, Higashino H, Koyama Y, Doi M, Miyagawa M, Nakata S, Shimizu K. y Ikezoe J. Two– and three– dimensional CT ventriculography: A new application of helical CT. American Journal of Roentgenology. 2000; 174(1):203–208.Frangi AJ, Niessen WJ, Viergever MA. Three–dimensional modeling for functional analysis of cardiac images: A review. IEEE Transactions on Medical Imaging. 2001; 20(1):2–25.Brooks RA, Chiro GD. Theory of image reconstruction in computed tomography. Radiology. 1975; 117:561–572.Gore JC, Orr JS. Image formation by back-projection: A reappraisal. Physics in Medicine and Biology. 1979; 24(4):793–801.Taguchi K, Aradate H. Algorithm for image reconstruction in multi–slice helical CT. Medical Physics. 1998; 25(5):550–561.Hu H. Multi-slice helical CT: Scan and reconstruction. Medical Physics. 1999; 26(1):5–18.Hu H, Pan T, Shen Y. Multi–slice helical ct: Image temporal resolution. IEEE Transactions on Medical Imaging. 2000b; 19(5):384–390.Hong C, Becker C, Huber A, Schoepf UJ, Ohnesorge B, Knez A, Rr¨uning, Reiser MF. ECG–gated reconstructed multi–detector row CT coronary angiography: Effect of varying trigger delay on image quality. Radiology. 2001; 220(3):712–717.Cline HE, Lorensen WE, Ludke S, Crawford CR, Teeter BC. Two algorithms for three–dimensional reconstruction of tomograms. Medical Physics. 1988; 15(3):320–327.Higgins WE, Chung N, Ritman EL. Extraction of left–ventricular chamber from 3–D CT images of the heart. IEEE Transactions on Medical Imaging. 1990; 9(4):384–395.McInerney T, Terzopoulos D. A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. Computerized Medical Imaging and Graphics. 1995; 19(1):69–83.Staib L, Duncan JS. Model–based deformable surface finding for medical images. IEEE Transactions on Medical Imaging. 1996; 15(5):720–731.Ecabert O, Peters J, Schramm H, Lorenz C, Berg JV, Walker M, Vembar M, Olszewski M, Subramanyan K, Lavi G, Weese J. Automatic model–based segmentation of the heart in CT images. IEEE Transactions on Medical Imaging. 2008; 27(9):1189–1201.Giesler T, Baum U, Ropers D, Ulzheimer S, Wenkel E, Mennicke M, Bautz W, Kalender WA, Daniel WG, Achenbach S. Noninvasive visualization of coronary arteries using contrast-enhanced multidetector CT: Influence of heart rate on image quality and stenosis detection. American Journal of Roentgenology. 2002; 179(5):911–916.Shim SS, Kim Y, Lim SM. Improvement of image quality with–blocker premedication on ECG–gated 16–MDCT coronary angiography. American Journal of Roentgenology. 2005; 184(2):649–654.General Electric. Advanced CT. A GE HealthCare Publication. 2004; páginas 49–59.Fuchs T, Kachelriess M, Kalender W. Systems performance multislice spiral computed tomography. IEEE Engineering in Medicine and Biology Magazine. 2000; 19(5):63–70.Seeram E. Computed Tomography: Physical Principles, Clinical Applications, and Quality Control. New York: WB. Saunders Company; 2001.Kalender W. Computed Tomography: Fundamentals, System Technology, Image Quality and Applications. Munich: Publicis MCD Verlag; 2000.Rydberg J, Buckwalter KA, Caldemeyer KS, Phillips MD, Conces DJ, Aisen AM, Persohn SA, Kopecky KK. Multisection CT: Scanning techniques and clinical applications. RadioGraphics. 2000; 20(6): 1787–1806.Hu H, He HD, Foley WD, Fox SH. Four multidetector–row helical CT: Image quality and volume coverage speed. Radiology. 2000a; 215(1):55– 62.Kelly DM, Hasegawa I, Borders R, Boiselle PM, Hatabu H. High-resolution CT using MDCT: Comparison of degree of motion artifact between volumetric and axial methods. American Journal of Roentgenology. 2004; 182(3):757–759.Schoenhagen P, Halliburton SS, Stillman AE, Kuzmiak SA, Nissen SE, Tuzcu EM, White RD. Noninvasive imaging of coronary arteries: Current and future role of multidetector row CT. Radiology. 2004; 232(1):7–17.Boiselle PM, Ernst A. Recent advances in central airway imaging. Chest. 2002; 121(5):1651–1660.Hoffmann MHK, Shi H, Schmitz BL, Schmid FT, Lieberknecht M, Schulze R, Ludwig B, Kroschel U, Jahnke N, Haerer W, Brambs H-J, Aschoff AJ. Noninvasive coronary angiography with Multislice Computed Tomography. The Journal of the American Medical Association. 2005; 293(20):2471–2478.Katz DS, Hon M. CT angiography of the lower extremities and aortoiliac system with a multi–detector row helical CT scanner: Promise of new opportunities fulfilled. Radiology. 2001; 221(1):7–10.Chen T, Metaxas DN, Axel L. 3D cardiac anatomy reconstruction using high resolution ct data. En: Barillot C, Haynor DR, Hellier P. (eds). MICCAI (1). Springer: volumen 3216 de Lecture Notes in Computer Science; 2004: 411–418.Fleureau J, Garreau M, Hernáde, A, Simon A, Boulmier D. (2006). Multi– object and N–D segmentation of cardiac MSCT data using SVM classifiers and a connectivity algorithm. Computers in Cardiology, páginas 817–820.Fleureau J, Garreau M, Hernádez A, Simon A, Boulmier D. (2007). 3D multi–object segmentation of cardiac MSCT imaging by using a multi– agent approach. 29th Conference IEEE EMBS, páginas 817–820.Sermesant M, Delingette H, Ayache N. An electromechanical model of the heart for image analysis and simulation. IEEE Transactions on Medical Imaging. 2006; 25(5):612–615.Van Assen H, Danilouchkine M, Dirksen M, Reiber J, Lelieveldt B. A 3D active shape model driven by fuzzy inference: Application to cardiac CT and MR. IEEE Transactions on Information Technology in Biomedicine. 2008; 12(5):595–605.Bravo A, Vera M, Garreau M, Medina R. Three–dimensional segmentation of ventricular heart chambers from multi–slice computerized tomography: An hybrid approach. In: Editors. Cherifi H, Zain JM, El- Qawasmeh E. Proceedings of Digital Information and Communication Technology and Its Applications.Springer, Berlin, Heidelberg: Communications in Computer and Information Science; 2011. P.287–301.Fan L, Chen CW. LV motion estimation based on the integration of continuum mechanics and estimation theory.San Diego: International Society for Optics and Photonics; 1999.Shi P, Sinusas AJ, Constable RT, Ritman E, Duncan JS. Point-tracked quantitative analysis of left ventricular surface motion from 3–D image sequences. IEEE Transactions on Medical Imaging. 2000; 19(1):36–50.Bravo A, Medina R, Passariello G, Garreau M. “Estimation of the deformation field for the left ventricle walls in 4–D multislice computerized tomography”. Lecture Notes in Computer Science. 2005; 3773(1): 348–359.Bravo A, Mantilla J, Clemente J, Vera M, Medina R. “Left Ventricle Segmentation and Motion Analysis in Multi–Slice ComputerizedTomography”, In: Editors: Gonz´alez Fabio, Romero–Castro Eduardo. Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques. New York, USA: Medical Information Science Reference; 2010. p. 307–322.Achenbach S, Ropers D, Holle J, Muschiol G, Daniel WG, Moshage W. In–plane coronary arterial motion velocity: Measurement with electron– beam CT. Radiology. 2000; 216(2):457–463.Gordon R, Bender R, Herman G. Algebraic reconstruction techniques (ART) for three–dimensional electron microscopy and X–ray photography. Journal of Theoretical Biology. 1970; 29(9):471–482.Jiang M, Wang G. Convergence studies on iterative algorithms for image reconstruction. IEEE Transactions on Medical Imaging. 2003; 22(5):569– 579.Lange K, Carson R. EM reconstruction algorithms for emission and transmission tomography. Journal of Computed Assited Tomography. 1984; 8(3):306–316.Lange K, Fessler JA. Globally convergent algorithms for maximum a posteriori transmission tomography. IEEE Transactions on Image Proceesing. 1995; 4(10):1430–1438.Fessler JA, Ficaro EP, Clinthorne NH, Lange K. Gruoped–coordinate ascent algorithms for penalized–likelihood transmission image reconstruction. IEEE Transactions on Medical Imaging. 1997; 16(2):166–177.Wang G, Crawford CR. Guest editorial: Multirow detector and conebeam spiral/helical CT. IEEE Transactions on Medical Imaging. 2000; 19(9):817–820.Morgan C. Physics of Radiology. Baltimore: University Park Press; 1983.Wolbarst A. Basic Principles of Computed Tomography. St. Norwalk: Appleton & Lange; 1993.Ohnesorge B, Flohr T, Becker C, Kopp AF, Schoepf UJ, Baum U, Knez A, Klingenbeck-Regn K, y Reiser MF. Cardiac imaging by means of electrocardiographically gated multisection spiral CT: Initial experience. Radiology. 2000; 217(2):564–671.Niessen WJ, ter Haar Romeny BM, Viergever MA. Geodesic deformable models for medical image analysis. IEEE Transactions on Medical Imaging. 1998; 17(4):634–641.Huérfano Y, Vera M, Del Mar A, Vera M-I, Salazar W, Chacón J, Wilches S, Graterol M, Torres M, Arias V, Rojas J, Prieto C, Siguencia W, Angarita L, Ortiz R, Rojas D, Garicano C, Chacín M, Contreras J, Bermúdez W, Bravo A. Segmentación computacional de la aurícula derecha en imágenes de tomografía cardiaca. Latinoamericana de Hipertensión. 2015; 10(4):79-84.Vera M, Huérfano Y, Contreras J, Vera M-I, Del Mar A, Chacón J, Wilches S, Graterol M, Riaño D, Rojas J, Bermúdez W. Segmentación automática de la arteria aorta torácica en imagines de tomografía computarizada cardiaca. 2016a; 11(4):110-116.Vera M, Huérfano Y, Valbuena O, Chacón J, Contreras J, Vera M-I, Wilches S, Graterol M, Riaño D, Salazar J, Rojas J, Bermúdez W. Segmentación automática de la aurícula izquierda en imágenes de tomografía computarizada cardiaca. Latinoamericana de Hipertensión. 2016a; 11(3):54- 59.Huérfano Y, Vera M, Del Mar A, Vera M-I, Contreras J, Chacón J, Wilches S, Graterol M, Torres M, Arias V, Rojas J, Prieto C, Siguencia W, Angarita L, Ortiz R, Rojas D, Garicano C, Riaño D, Chacín M, Bermúdez W, Bravo A. Modelo computacional de la válvula pulmonar en contextos hipertensivos. Latinoamericana de Hipertensión. 2016a; 11(2):7-11.Huérfano Y, Vera M, Del Mar A, Vera M-I, Chacón J, Wilches S, Graterol M, Torres M, Arias V, Rojas J, Prieto C, Siguencia W, Angarita L, Ortiz R, Rojas D, Garicano C, Riaño D, Chacín M, Contreras J, Bermúdez W, Bravo A. Segmentación computacional de la vena cava superior y procesos hipertensivos. Latinoamericana de Hipertensión. 2016b; 11(2):25-29.LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bonga.unisimon.edu.co/bitstreams/26fae9ae-d9c4-48ba-98f1-f960ee628e58/download8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12442/1846oai:bonga.unisimon.edu.co:20.500.12442/18462019-04-11 21:51:42.604metadata.onlyhttps://bonga.unisimon.edu.coDSpace UniSimonbibliotecas@biteca.comTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=