SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence

Background. Over the last few years, the use of sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP-1RA) has increased substantially in medical practice due to their documented benefits in cardiorenal and metabolic health. In this sense, and in addit...

Full description

Autores:
D'Marco, Luis
Morillo, Valery
Gorriz, José Luis
Suarez, María K.
Nava, Manuel
Ortega, Ángel
Parra, Heliana
Villasmil, Nelson
Rojas-Quintero, Joselyn
Bermúdez, Valmore
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/9525
Acceso en línea:
https://hdl.handle.net/20.500.12442/9525
https://doi.org/10.1155/2021/9032378
Palabra clave:
Sodium-glucose cotransporter 2 inhibitors (SGLT2i)
Glucagon-like peptide 1 receptor agonists (GLP-1RA)
glycemic control
antihyperglycemic
Management of diabetes
Patients obesity and cardiorenal compromise
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_6f4cb4f990d9bed583faaa937e8251b5
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/9525
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence
title SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence
spellingShingle SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence
Sodium-glucose cotransporter 2 inhibitors (SGLT2i)
Glucagon-like peptide 1 receptor agonists (GLP-1RA)
glycemic control
antihyperglycemic
Management of diabetes
Patients obesity and cardiorenal compromise
title_short SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence
title_full SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence
title_fullStr SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence
title_full_unstemmed SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence
title_sort SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence
dc.creator.fl_str_mv D'Marco, Luis
Morillo, Valery
Gorriz, José Luis
Suarez, María K.
Nava, Manuel
Ortega, Ángel
Parra, Heliana
Villasmil, Nelson
Rojas-Quintero, Joselyn
Bermúdez, Valmore
dc.contributor.author.none.fl_str_mv D'Marco, Luis
Morillo, Valery
Gorriz, José Luis
Suarez, María K.
Nava, Manuel
Ortega, Ángel
Parra, Heliana
Villasmil, Nelson
Rojas-Quintero, Joselyn
Bermúdez, Valmore
dc.subject.eng.fl_str_mv Sodium-glucose cotransporter 2 inhibitors (SGLT2i)
Glucagon-like peptide 1 receptor agonists (GLP-1RA)
glycemic control
antihyperglycemic
Management of diabetes
Patients obesity and cardiorenal compromise
topic Sodium-glucose cotransporter 2 inhibitors (SGLT2i)
Glucagon-like peptide 1 receptor agonists (GLP-1RA)
glycemic control
antihyperglycemic
Management of diabetes
Patients obesity and cardiorenal compromise
description Background. Over the last few years, the use of sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP-1RA) has increased substantially in medical practice due to their documented benefits in cardiorenal and metabolic health. In this sense, and in addition to being used for glycemic control in diabetic patients, these drugs also have other favorable effects such as weight loss and lowering blood pressure, and more recently, they have been shown to have cardio and renoprotective effects with anti-inflammatory properties. Concerning the latter, the individual or associated use of these antihyperglycemic agents has been linked with a decrease in proinflammatory cytokines and with an improvement in the inflammatory profile in chronic endocrine-metabolic diseases. Hence, these drugs have been positioned as first-line therapy in the management of diabetes and its multiple comorbidities, such as obesity, which has been associated with persistent inflammatory states that induce dysfunction of the adipose tissue. Moreover, other frequent comorbidities in long-standing diabetic patients are chronic complications such as diabetic kidney disease, whose progression can be slowed by SGLT2i and/or GLP-1RA. The neuroendocrine and immunometabolism mechanisms underlying adipose tissue inflammation in individuals with diabetes and cardiometabolic and renal diseases are complex and not fully understood. Summary. This review intends to expose the probable molecular mechanisms and compile evidence of the synergistic or additive anti-inflammatory effects of SGLT2i and GLP-1RA and their potential impact on the management of patients with obesity and cardiorenal compromise.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-04-06T20:41:21Z
dc.date.available.none.fl_str_mv 2022-04-06T20:41:21Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.eng.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.citation.eng.fl_str_mv Luis D'Marco, Valery Morillo, José Luis Gorriz, María K. Suarez, Manuel Nava, Ángel Ortega, Heliana Parra, Nelson Villasmil, Joselyn Rojas-Quintero, Valmore Bermúdez, "SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence", Journal of Diabetes Research, vol. 2021, Article ID 9032378, 17 pages, 2021. https://doi.org/10.1155/2021/9032378
dc.identifier.issn.none.fl_str_mv 23146753
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/9525
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1155/2021/9032378
identifier_str_mv Luis D'Marco, Valery Morillo, José Luis Gorriz, María K. Suarez, Manuel Nava, Ángel Ortega, Heliana Parra, Nelson Villasmil, Joselyn Rojas-Quintero, Valmore Bermúdez, "SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence", Journal of Diabetes Research, vol. 2021, Article ID 9032378, 17 pages, 2021. https://doi.org/10.1155/2021/9032378
23146753
url https://hdl.handle.net/20.500.12442/9525
https://doi.org/10.1155/2021/9032378
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.eng.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.eng.fl_str_mv Hindawi
dc.source.eng.fl_str_mv Journal of Diabetes Research
Volume 2021, Article ID 9032378
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/5527887c-34e2-4a0f-9932-c37c94fd1e91/download
https://bonga.unisimon.edu.co/bitstreams/a22426fd-e851-4bfa-a152-d28a339ad089/download
https://bonga.unisimon.edu.co/bitstreams/f7d3aaee-8570-4503-b62a-c07b9d03381c/download
https://bonga.unisimon.edu.co/bitstreams/fb4a7be5-dee0-41e8-b5e8-145a3cead7a7/download
https://bonga.unisimon.edu.co/bitstreams/b02e4c59-25f5-4b29-9434-fa3036bc6ed5/download
https://bonga.unisimon.edu.co/bitstreams/713462eb-ffea-464f-b335-6038aceee17a/download
https://bonga.unisimon.edu.co/bitstreams/e2c8ab68-7ede-4165-976e-d6a1c2a77192/download
bitstream.checksum.fl_str_mv e87c52ab2ff799ef3451eafb6cf448d2
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
f163d4bd65e45e40a404fccdfb6bfd29
f163d4bd65e45e40a404fccdfb6bfd29
7a2a2812d41604a463816f3a7840ba2c
7a2a2812d41604a463816f3a7840ba2c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100533437071360
spelling D'Marco, Luis4f289143-892b-43a3-ac1f-6f462224f314Morillo, Valeryf3f6dd3c-b192-4bf7-83c7-b7b1400b56b3Gorriz, José Luis7aff8528-9549-4596-b47d-945fb22747d8Suarez, María K.ed6bc710-81c5-428f-af74-87fceee7577dNava, Manuelf9865b69-841a-4eea-b7da-6a174b033d10Ortega, Ángelb6a809bb-4d26-4e53-9419-e4eb9fb40a9bParra, Heliana13603b25-99ce-42ac-a469-5b65a89ce794Villasmil, Nelson50e458e5-5ecc-452c-9129-64ed50705088Rojas-Quintero, Joselyn1fcd6ac1-186e-465c-a5fd-3c25563275abBermúdez, Valmore29f9aa18-16a4-4fd3-8ce5-ed94a0b8663a2022-04-06T20:41:21Z2022-04-06T20:41:21Z2021Luis D'Marco, Valery Morillo, José Luis Gorriz, María K. Suarez, Manuel Nava, Ángel Ortega, Heliana Parra, Nelson Villasmil, Joselyn Rojas-Quintero, Valmore Bermúdez, "SGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescence", Journal of Diabetes Research, vol. 2021, Article ID 9032378, 17 pages, 2021. https://doi.org/10.1155/2021/903237823146753https://hdl.handle.net/20.500.12442/9525https://doi.org/10.1155/2021/9032378Background. Over the last few years, the use of sodium-glucose cotransporter 2 inhibitors (SGLT2i) and glucagon-like peptide 1 receptor agonists (GLP-1RA) has increased substantially in medical practice due to their documented benefits in cardiorenal and metabolic health. In this sense, and in addition to being used for glycemic control in diabetic patients, these drugs also have other favorable effects such as weight loss and lowering blood pressure, and more recently, they have been shown to have cardio and renoprotective effects with anti-inflammatory properties. Concerning the latter, the individual or associated use of these antihyperglycemic agents has been linked with a decrease in proinflammatory cytokines and with an improvement in the inflammatory profile in chronic endocrine-metabolic diseases. Hence, these drugs have been positioned as first-line therapy in the management of diabetes and its multiple comorbidities, such as obesity, which has been associated with persistent inflammatory states that induce dysfunction of the adipose tissue. Moreover, other frequent comorbidities in long-standing diabetic patients are chronic complications such as diabetic kidney disease, whose progression can be slowed by SGLT2i and/or GLP-1RA. The neuroendocrine and immunometabolism mechanisms underlying adipose tissue inflammation in individuals with diabetes and cardiometabolic and renal diseases are complex and not fully understood. Summary. This review intends to expose the probable molecular mechanisms and compile evidence of the synergistic or additive anti-inflammatory effects of SGLT2i and GLP-1RA and their potential impact on the management of patients with obesity and cardiorenal compromise.pdfengHindawiAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Journal of Diabetes ResearchVolume 2021, Article ID 9032378Sodium-glucose cotransporter 2 inhibitors (SGLT2i)Glucagon-like peptide 1 receptor agonists (GLP-1RA)glycemic controlantihyperglycemicManagement of diabetesPatients obesity and cardiorenal compromiseSGLT2i and GLP-1RA in Cardiometabolic and Renal Diseases: From Glycemic Control to Adipose Tissue Inflammation and Senescenceinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1F. Paneni, J. A. Beckman, M. A. Creager, and F. Cosentino, “Diabetes and vascular disease: pathophysiology, clinical consequences, and medical therapy: part I,” European Heart Journal, vol. 34, no. 31, pp. 2436–2443, 2013M. Izaguirre, J. Gómez-Ambrosi, A. Rodríguez et al., “GLP-1 limits adipocyte inflammation and its low circulating pre-operative concentrations predict worse type 2 diabetes remission after bariatric surgery in obese patients,” Journal of Clinical Medicine, vol. 8, no. 4, p. 479, 2019L. Castillo Parodi, E. Navarro Jiménez, Y. Arango Quiroz et al., “Obesity association with chronic renal disease in patients attended at Clínica de La Costa. Barranquilla, Colombia. 2005-2014,” Revista Colombiana de Nefrología, vol. 3, no. 1, pp. 14–19, 2016.I. M. Stratton, A. I. Adler, H. A. Neil et al., “Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study,” BMJ, vol. 321, no. 7258, pp. 405–412, 2000.K. Takebayashi and T. Inukai, “Effect of sodium glucose cotransporter 2 inhibitors with low SGLT2/SGLT1 selectivity on circulating glucagon-like peptide 1 levels in type 2 diabetes mellitus,” Journal of Clinical Medicine Research, vol. 9, no. 9, pp. 745–753, 2017.C. K. Kramer and B. Zinman, “Sodium-glucose cotransporter-2 (SGLT-2) inhibitors and the treatment of type 2 diabetes,” Annual Review of Medicine, vol. 70, no. 1, pp. 323–334, 2019.V. A. Fonseca, “New developments in diabetes management: medications of the 21st century,” Clinical Therapeutics, vol. 36, no. 4, pp. 477–484, 2014.F. Iannantuoni, A. M. de Marañon, N. Diaz-Morales et al., “The SGLT2 inhibitor empagliflozin ameliorates the inflammatory profile in type 2 diabetic patients and promotes an antioxidant response in leukocytes,” Journal of Clinical Medicine, vol. 8, no. 11, p. 1814, 2019.M. H. Elnaem, N. O. Mansour, A. F. Nahas, M. A. Baraka, R. Elkalmi, and E. Cheema, “Renal outcomes associated with the use of non-insulin antidiabetic pharmacotherapy: a review of current evidence and recommendations,” International Journal of General Medicine, vol. Volume 13, pp. 1395–1409, 2020.A. Chewcharat, N. Prasitlumkum, C. Thongprayoon et al., “Efficacy and safety of SGLT-2 inhibitors for treatment of diabetes mellitus among kidney transplant patients: a systematic review and meta-analysis,” Medical Science, vol. 8, no. 4, p. 47, 2020.P. Sarafidis, C. J. Ferro, E. Morales et al., “SGLT-2 inhibitors and GLP-1 receptor agonists for nephroprotection and cardioprotection in patients with diabetes mellitus and chronic kidney disease. A consensus statement by the EURECA-m and the DIABESITY working groups of the ERA-EDTA,” Nephrology, Dialysis, Transplantation, vol. 34, no. 2, pp. 208–230, 2019.H. C. Gerstein, H. M. Colhoun, G. R. Dagenais et al., “Dulaglutide and renal outcomes in type 2 diabetes: an exploratory analysis of the REWIND randomised, placebo-controlled trial,” The Lancet, vol. 394, no. 10193, pp. 131–138, 2019O. Mosenzon, S. D. Wiviott, A. Cahn et al., “Effects of dapagliflozin on development and progression of kidney disease in patients with type 2 diabetes: an analysis from the DECLARE-TIMI 58 randomised trial,” The Lancet Diabetes & Endocrinology, vol. 7, no. 8, pp. 606–617, 2019.C.-H. Lin, L. Shao, Y.-M. Zhang et al., “An evaluation of liraglutide including its efficacy and safety for the treatment of obesity,” Expert Opinion on Pharmacotherapy, vol. 21, no. 3, pp. 275–285, 2020L. Zhao, A. Q. Li, T. F. Zhou, M. Q. Zhang, and X. M. Qin, “Exendin-4 alleviates angiotensin II-induced senescence in vascular smooth muscle cells by inhibiting Rac1 activation via a CAMP/PKA-dependent pathway,” American Journal of Physiology-Cell Physiology, vol. 307, no. 12, pp. C1130–C1141, 2014.R. A. DeFronzo, M. Hompesch, S. Kasichayanula et al., “Characterization of renal glucose reabsorption in response to dapagliflozin in healthy subjects and subjects with type 2 diabetes,” Diabetes Care, vol. 36, no. 10, pp. 3169–3176, 2013.E. Ferrannini, S. A. Veltkamp, R. A. Smulders, and T. Kadokura, “Renal glucose handling: impact of chronic kidney disease and sodium-glucose cotransporter 2 inhibition in patients with type 2 diabetes,” Diabetes Care, vol. 36, no. 5, pp. 1260–1265, 2013H. Rahmoune, P. W. Thompson, J. M. Ward, C. D. Smith, G. Hong, and J. Brown, “Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non-insulin-dependent diabetes,” Diabetes, vol. 54, no. 12, pp. 3427–3434, 2005.X. X. Wang, J. Levi, Y. Luo et al., “SGLT2 Inhibition and Diabetic Nephropathy,” Journal of Biological Chemistry, vol. 292, no. 13, pp. 5335–5348, 2017B. Komoroski, N. Vachharajani, Y. Feng, L. Li, D. Kornhauser, and M. Pfister, “Dapagliflozin, a novel, selective SGLT2 inhibitor, improved glycemic control over 2 weeks in patients with type 2 diabetes mellitus,” Clinical Pharmacology & Therapeutics, vol. 85, no. 5, pp. 513–519, 2009H. J. L. Heerspink, B. V. Stefánsson, R. Correa-Rotter et al., “Dapagliflozin in patients with chronic kidney disease,” New England Journal of Medicine, vol. 383, no. 15, pp. 1436–1446, 2020J. J. V. McMurray, S. D. Solomon, S. E. Inzucchi et al., “Dapagliflozin in patients with heart failure and reduced ejection fraction,” New England Journal of Medicine, vol. 381, no. 21, pp. 1995–2008, 2019.M. Packer, S. D. Anker, J. Butler et al., “Cardiovascular and renal outcomes with empagliflozin in heart failure,” New England Journal of Medicine, vol. 383, no. 15, pp. 1413–1424, 2020.C. Wang, Y. Zhou, Z. Kong et al., “The renoprotective effects of sodium-glucose cotransporter 2 inhibitors versus placebo in patients with type 2 diabetes with or without prevalent kidney disease: a systematic review and meta-analysis,” Diabetes, Obesity and Metabolism, vol. 21, no. 4, pp. 1018–1026, 2019.J. H. Bae, E.-G. Park, S. Kim, S. G. Kim, S. Hahn, and N. H. Kim, “Effects of sodium-glucose cotransporter 2 inhibitors on renal outcomes in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials,” Scientific Reports, vol. 9, no. 1, article 13009, 2019.T. Toyama, B. L. Neuen, M. Jun et al., “Effect of SGLT2 inhibitors on cardiovascular, renal and safety outcomes in patients with type 2 diabetes mellitus and chronic kidney disease: a systematic review and meta-analysis,” Diabetes, Obesity and Metabolism, vol. 21, no. 5, pp. 1237–1250, 2019B. L. Neuen, T. Young, H. J. L. Heerspink et al., “SGLT2 inhibitors for the prevention of kidney failure in patients with type 2 diabetes: a systematic review and meta-analysis,” The Lancet Diabetes and Endocrinology, vol. 7, no. 11, pp. 845–854, 2019.M. Škrtić, G. K. Yang, B. A. Perkins et al., “Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration,” Diabetologia, vol. 57, no. 12, pp. 2599–2602, 2014.A. T. Layton, V. Vallon, and A. Edwards, “Predicted consequences of diabetes and SGLT inhibition on transport and oxygen consumption along a rat nephron,” American Journal of Physiology - Renal Physiology, vol. 310, no. 11, pp. F1269–F1283, 2016.V. Vallon, M. Gerasimova, M. A. Rose et al., “SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic akita mice,” American Journal of Physiology - Renal Physiology, vol. 306, no. 2, pp. F194–F204, 2014.Z. Ashrafi Jigheh, A. Ghorbani Haghjo, H. Argani et al., “Empagliflozin alleviates renal inflammation and oxidative stress in streptozotocin-induced diabetic rats partly by repressing HMGB1-TLR4 receptor axis,” Iranian Journal of Basic Medical Sciences, vol. 22, no. 4, pp. 384–390, 2019.C. C. J. Dekkers, S. Petrykiv, G. D. Laverman, D. Z. Cherney, R. T. Gansevoort, and H. J. L. Heerspink, “Effects of the SGLT-2 inhibitor dapagliflozin on glomerular and tubular injury markers,” Diabetes, Obesity and Metabolism, vol. 20, no. 8, pp. 1988–1993, 2018.B. Zinman, C. Wanner, J. M. Lachin et al., “Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes,” New England Journal of Medicine, vol. 373, no. 22, pp. 2117–2128, 2015.S. D. Wiviott, I. Raz, M. P. Bonaca et al., “Dapagliflozin and cardiovascular outcomes in type 2 diabetes,” New England Journal of Medicine, vol. 380, no. 4, pp. 347–357, 2019.E. Díaz-Rodríguez, R. M. Agra, Á. L. Fernández et al., “Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability,” Cardiovascular Research, vol. 114, no. 2, pp. 336–346, 2018.B. Neal, V. Perkovic, K. W. Mahaffey et al., “Optimizing the analysis strategy for the CANVAS program: a prespecified plan for the integrated analyses of the CANVAS and CANVAS-R trials,” Diabetes, Obesity and Metabolism, vol. 19, no. 7, pp. 926–935, 2017.I. Tikkanen, K. Narko, C. Zeller et al., “Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension,” Diabetes Care, vol. 38, no. 3, pp. 420–428, 2015.C. G. Santos-Gallego, J. A. Requena-Ibanez, R. San Antonio et al., “Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics,” Journal of the American College of Cardiology, vol. 73, no. 15, pp. 1931–1944, 2019L. Uthman, A. Baartscheer, B. Bleijlevens et al., “Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation,” Diabetologia, vol. 61, no. 3, pp. 722–726, 2018.N. J. Byrne, N. Matsumura, Z. H. Maayah et al., “Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure,” Circulation: Heart Failure, vol. 13, no. 1, article e006277, 2020.G. D. Lopaschuk and S. Verma, “Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review,” JACC: Basic to Translational Science, vol. 5, no. 6, pp. 632–644, 2020.R. Abdelmasih, R. Abdelmaseih, R. Thakker et al., “Update on the Cardiovascular benefits of sodium-glucose co-transporter-2 inhibitors: mechanism of action, available agents and comprehensive review of literature,” Cardiology Research, vol. 12, no. 4, pp. 210–218, 2021.S. Verma, “Potential mechanisms of sodium-glucose co-transporter 2 inhibitor-related cardiovascular benefits,” The American Journal of Cardiology, vol. 124, Suppl 1, pp. S36–S44, 2019T. A. Zelniker, S. D. Wiviott, I. Raz et al., “SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials,” The Lancet, vol. 393, pp. 31–39, 2019.J. Bolinder, Ö. Ljunggren, L. Johansson et al., “Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin,” Diabetes, Obesity & Metabolism, vol. 16, pp. 159–169, 2014.A. Yoshida, Y. Matsubayashi, T. Nojima et al., “Attenuation of weight loss through improved antilipolytic effect in adipose tissue via the SGLT2 inhibitor tofogliflozin,” The Journal of Clinical Endocrinology and Metabolism, vol. 104, pp. 3647–3660, 2019.R. Bouchi, N. Sonoda, J. Itoh et al., “Effects of intensive exercise combined with dapagliflozin on body composition in patients with type 2 diabetes: a randomized controlled trial,” Endocrine Journal, vol. 68, no. 3, pp. 329–343, 2020.J. Bolinder, Ö. Ljunggren, J. Kullberg et al., “Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin,” The Journal of Clinical Endocrinology and Metabolism, vol. 97, pp. 1020–1031, 2012.A. Merovci, C. Solis-Herrera, G. Daniele et al., “Dapagliflozin improves muscle insulin sensitivity but enhances endogenous glucose production,” The Journal of Clinical Investigation, vol. 124, pp. 509–514, 2014.E. Ferrannini, S. Baldi, S. Frascerra et al., “Shift to fatty substrate utilization in response to sodium–glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes,” Diabetes, vol. 65, pp. 1190–1195, 2016.J. J. Devenny, H. E. Godonis, S. J. Harvey, S. Rooney, M. J. Cullen, and M. A. Pelleymounter, “Weight loss induced by chronic dapagliflozin treatment is attenuated by compensatory hyperphagia in diet-induced obese (DIO) rats,” Obesity, vol. 20, pp. 1645–1652, 2012.E. Ferrannini, E. Muscelli, S. Frascerra et al., “Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients,” Journal of Clinical Investigation, vol. 124, pp. 499–508, 2014.N. Inagaki, M. Goda, S. Yokota, N. Maruyama, and H. Iijima, “Safety and efficacy of canagliflozin in Japanese patients with type 2 diabetes mellitus: post hoc subgroup analyses according to body mass index in a 52-week open-label study,” Expert Opinion on Pharmacotherapy, vol. 16, pp. 1577–1591, 2015E. Hoeben, W. De Winter, M. Neyens, D. Devineni, A. Vermeulen, and A. Dunne, “Population pharmacokinetic modeling of canagliflozin in healthy volunteers and patients with type 2 diabetes mellitus,” Clinical Pharmacokinetics, vol. 55, pp. 209–223, 2016.R. E. Brown, N. Gupta, and R. Aronson, “Effect of dapagliflozin on glycemic control, weight, and blood pressure in patients with type 2 diabetes attending a specialist endocrinology practice in Canada: a retrospective cohort analysis,” Diabetes Technology & Therapeutics, vol. 19, pp. 685–691, 2017.D. E. Kohan, P. Fioretto, W. Tang, and J. F. List, “Long-term study of patients with type 2 diabetes and moderate renal impairment shows that dapagliflozin reduces weight and blood pressure but does not improve glycemic control,” Kidney International, vol. 85, pp. 962–971, 2014P. Hollander, H. E. Bays, J. Rosenstock et al., “Coadministration of canagliflozin and phentermine for weight management in overweight and obese individuals without diabetes: a randomized clinical trial,” Diabetes Care, vol. 40, pp. 632–639, 2017.S. A. Jabbour, J. P. Frías, C. Guja, E. Hardy, A. Ahmed, and P. Öhman, “Effects of exenatide once weekly plus dapagliflozin, exenatide once weekly, or dapagliflozin, added to metformin monotherapy, on body weight, systolic blood pressure, and triglycerides in patients with type 2 diabetes in the DURATION-8 study,” Diabetes, Obesity & Metabolism, vol. 20, pp. 1515–1519, 2018.J. Y. Huh, Y. J. Park, M. Ham, and J. B. Kim, “Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity,” Molecules and Cells, vol. 37, pp. 365–371, 2014.H. Kitade, K. Sawamoto, M. Nagashimada et al., “CCR5 plays a critical role in obesity-induced adipose tissue inflammation and insulin resistance by regulating both macrophage recruitment and M1/M2 status,” Diabetes, vol. 61, no. 7, pp. 1680–1690, 2012.S. Nishimura, I. Manabe, M. Nagasaki et al., “CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity,” Nature Medicine, vol. 15, no. 8, pp. 914–920, 2009.L. Xu, N. Nagata, M. Nagashimada et al., “SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice,” eBioMedicine, vol. 20, pp. 137–149, 2017.X. Hui, P. Gu, J. Zhang et al., “Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation,” Cell Metabolism, vol. 22, no. 2, pp. 279–290, 2015.F. C. Lucchini, S. Wueest, T. D. Challa et al., “ASK1 inhibits browning of white adipose tissue in obesity,” Nature Communications, vol. 11, no. 1, p. 1642, 2020.P. Kotzbeck, A. Giordano, E. Mondini et al., “Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation[S],” Journal of Lipid Research, vol. 59, no. 5, pp. 784–794, 2018.M. Alcalá, M. Calderon-Dominguez, E. Bustos et al., “Increased inflammation, oxidative stress and mitochondrial respiration in brown adipose tissue from obese mice,” Scientific Reports, vol. 7, no. 1, 2017.R. M. Pirzgalska, E. Seixas, J. S. Seidman et al., “Sympathetic neuron-associated macrophages contribute to obesity by importing and metabolizing norepinephrine,” Nature Medicine, vol. 23, no. 11, pp. 1309–1318, 2017.J. R. Matthews, L. Y. Herat, A. L. Magno, S. Gorman, M. P. Schlaich, and V. B. Matthews, “SGLT2 inhibitor-induced sympathoexcitation in white adipose tissue: a novel mechanism for beiging,” Biomedicine, vol. 8, no. 11, p. 514, 2020.E. W. Choi, M. Lee, J. W. Song et al., “Fas mutation reduces obesity by increasing IL-4 and IL-10 expression and promoting white adipose tissue browning,” Scientific Reports, vol. 10, no. 1, article 12001, 2020.N. Ouchi and K. Walsh, “Adiponectin as an anti-inflammatory factor,” Clinica Chimica Acta, vol. 380, no. 1-2, pp. 24–30, 2007.Y. Arita, S. Kihara, N. Ouchi et al., “Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity,” Biochemical and Biophysical Research Communications, vol. 257, no. 1, pp. 79–83, 1999.Y. Chen, Y. Zheng, L. Liu et al., “Adiponectin inhibits TNF-α-activated PAI-1 expression via the CAMP-PKA-AMPK-NF-ΚB axis in human umbilical vein endothelial cells,” Cellular Physiology and Biochemistry, vol. 42, no. 6, pp. 2342–2352, 2017.Y. Zhang, X.-L. Wang, J. Zhao et al., “Adiponectin inhibits oxidative/nitrative stress during myocardial ischemia and reperfusion via PKA signaling,” American Journal of Physiology. Endocrinology and Metabolism, vol. 305, no. 12, pp. E1436–E1443, 2013.C. Zhang, Y. Liao, Q. Li et al., “Recombinant adiponectin ameliorates liver ischemia reperfusion injury via activating the AMPK/ENOS pathway,” PLoS One, vol. 8, no. 6, article e66382, 2013.X. Yang, Q. Liu, Y. Li et al., “The diabetes medication canagliflozin promotes mitochondrial remodelling of adipocyte via the AMPK-Sirt1-Pgc-1α signalling pathway,” Adipocytes, vol. 9, no. 1, pp. 484–494, 2020.S. López-Domènech, Z. Abad-Jiménez, F. Iannantuoni et al., “Moderate weight loss attenuates chronic endoplasmic reticulum stress and mitochondrial dysfunction in human obesity,” Molecular Metabolism, vol. 19, pp. 24–33, 2019X. Yin, I. R. Lanza, J. M. Swain, M. G. Sarr, K. S. Nair, and M. D. Jensen, “Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size,” The Journal of Clinical Endocrinology and Metabolism, vol. 99, no. 2, pp. E209–E216, 2014.S. Heinonen, J. Buzkova, M. Muniandy et al., “Impaired mitochondrial biogenesis in adipose tissue in acquired obesity,” Diabetes, vol. 64, no. 9, pp. 3135–3145, 2015.D. Wei, L. Liao, H. Wang, W. Zhang, T. Wang, and Z. Xu, “Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro,” Life Sciences, vol. 247, article 117414, 2020.J. J. H. Bray, H. Foster-Davies, and J. W. Stephens, “A systematic review examining the effects of sodium-glucose cotransporter-2 inhibitors (SGLT2is) on biomarkers of inflammation and oxidative stress,” Diabetes Research and Clinical Practice, vol. 168, p. 108368, 2020.M. J. Perley and D. M. Kipnis, “Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic sujbjects,” The Journal of Clinical Investigation, vol. 46, no. 12, pp. 1954–1962, 1967.S. Mojsov, G. C. Weir, and J. F. Habener, “Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas,” The Journal of Clinical Investigation, vol. 79, no. 2, pp. 616–619, 1987.M. A. Nauck, M. M. Heimesaat, C. Orskov, J. J. Holst, R. Ebert, and W. Creutzfeldt, “Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus,” The Journal of Clinical Investigation, vol. 91, no. 1, pp. 301–307, 1993.M. A. Nauck, M. M. Heimesaat, K. Behle et al., “Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers,” The Journal of Clinical Endocrinology and Metabolism, vol. 87, no. 3, pp. 1239–1246, 2002.C. F. Deacon, M. A. Nauck, M. Toft-Nielsen, L. Pridal, B. Willms, and J. J. Holst, “Both subcutaneously and intravenously administered glucagon-like peptide I are rapidly degraded from the NH2-terminus in type ii diabetic patients and in healthy subjects,” Diabetes, vol. 44, no. 9, pp. 1126–1131, 1995.A. Carpio, M. Duran, M. Andrade et al., “Terapia Incretinomimética: Evidencia Clínica de La Eficacia de Los Agonistas Del GLP-1R y Sus Efectos Cardio-Protectores,” Rev Latinoam Hipertens, vol. 13, pp. 400–415, 2018R. A. Chudleigh, J. Platts, and S. C. Bain, “Comparative effectiveness of long-acting GLP-1 receptor agonists in type 2 diabetes: a short review on the emerging data,” Diabetes, Metabolic Syndrome and Obesity, vol. Volume 13, pp. 433–438, 2020.“Novo Nordisk A/S Effect of semaglutide versus placebo on the progression of renal impairment in subjects with type 2 diabetes and chronic kidney disease,” clinicaltrials.gov, 2021.D. M. Williams and M. Evans, “Semaglutide: charting new horizons in GLP-1 analogue outcome studies,” Diabetes Therapy, vol. 11, pp. 2221–2235, 2020. View at: Publisher Site | Google ScholarS. L. Kristensen, R. Rørth, P. S. Jhund et al., “Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials,” The Lancet Diabetes and Endocrinology, vol. 7, pp. 776–785, 2019.D. Giugliano, M. I. Maiorino, G. Bellastella, M. Longo, P. Chiodini, and K. Esposito, “GLP-1 receptor agonists for prevention of cardiorenal outcomes in type 2 diabetes: an updated meta-analysis including the REWIND and PIONEER 6 trials,” Diabetes, Obesity & Metabolism, vol. 21, pp. 2576–2580, 2019.T. A. Zelniker, S. D. Wiviott, I. Raz et al., “Comparison of the effects of glucagon-like peptide receptor agonists and sodium-glucose cotransporter 2 inhibitors for prevention of major adverse cardiovascular and renal outcomes in type 2 diabetes mellitus,” Circulation, vol. 139, no. 17, pp. 2022–2031, 2019.S. C. Palmer, B. Tendal, R. A. Mustafa et al., “Sodium-glucose cotransporter protein-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1) receptor agonists for type 2 diabetes: systematic review and network meta-analysis of randomised controlled trials,” BMJ, vol. 372, article m4573, 2021.M. J. Davies, R. Bergenstal, B. Bode et al., “efficacy of liraglutide for weight loss among patients with type 2 diabetes,” JAMA, vol. 314, no. 7, pp. 687–699, 2015.T. Baratieri, J. Dal Santo Ottoni, M. L. Botti, R. D. Maicel, and L. G. Soares, “Risco Cardiovascular Em Usuários de Programa de Atenção a Hipertensos e Diabéticos Em Um Município Do Paraná-Brasil,” Ciencia e Innovación en Salud, vol. 2, no. 1, pp. 18–26, 2014.T. Baratieri, J. Dal Santo Ottoni, M. L. Botti, R. D. Maicel, and L. G. Soares, “Risco Cardiovascular Em Usuários de Programa de Atenção a Hipertensos e Diabéticos Em Um Município Do Paraná-Brasil,” Ciencia e Innovación en Salud, vol. 2, no. 1, pp. 18–26, 2014.B. Wang, J. Zhong, H. Lin et al., “Blood pressure-lowering effects of GLP-1 receptor agonists exenatide and liraglutide: a meta-analysis of clinical trials,” Diabetes, Obesity & Metabolism, vol. 15, pp. 737–749, 2013.M. C. Bunck, A. Cornér, B. Eliasson et al., “One-year treatment with exenatide vs. insulin glargine: effects on postprandial glycemia, lipid profiles, and oxidative stress,” Atherosclerosis, vol. 212, no. 1, pp. 223–229, 2010.L. Wang, P. Li, Z. Tang, X. Yan, and B. Feng, “Structural modulation of the gut microbiota and the relationship with body weight: compared evaluation of liraglutide and saxagliptin treatment,” Scientific Reports, vol. 6, p. 33251, 2016.Z. Wang, S. Saha, S. Van Horn et al., “Gut microbiome differences between metformin- and liraglutide-treated T2DM subjects,” Endocrinology, Diabetes & Metabolism, vol. 1, article e00009, 2018.L. R. Carraro-Lacroix, G. Malnic, and A. C. C. Girardi, “Regulation of Na+/H+ exchanger NHE3 by glucagon-like peptide 1 receptor agonist exendin-4 in renal proximal tubule cells,” American Journal of Physiology Renal Physiology, vol. 297, pp. F1647–F1655, 2009.M. Kim, M. J. Platt, T. Shibasaki et al., “GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure,” Nature Medicine, vol. 19, pp. 567–575, 2013.Y. Ying, H. Zhu, Z. Liang, X. Ma, and S. Li, “GLP1 protects cardiomyocytes from palmitate-induced apoptosis via Akt/GSK3b/b-Catenin pathway,” Journal of Molecular Endocrinology, vol. 55, pp. 245–262, 2015.P. Chen, X. Shi, X. Xu et al., “Liraglutide ameliorates early renal injury by the activation of renal FoxO1 in a type 2 diabetic kidney disease rat model,” Diabetes Research and Clinical Practice, vol. 137, pp. 173–182, 2018.C. M. Mosterd, P. Bjornstad, and D. H. van Raalte, “Nephroprotective effects of GLP-1 receptor agonists: where do we stand?” Journal of Nephrology, vol. 33, pp. 965–975, 2020.G. Savarese, J. Butler, L. H. Lund, D. L. Bhatt, and S. D. Anker, “Cardiovascular effects of non-insulin glucose-lowering agents: a comprehensive review of trial evidence and potential cardioprotective mechanisms,” Cardiovascular Research, vol. cvab271, 2021.M. H. A. Muskiet, L. Tonneijck, Y. Huang et al., “Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial,” The Lancet Diabetes and Endocrinology, vol. 6, pp. 859–869, 2018.Y. S. Oh and H.-S. Jun, “Effects of glucagon-like peptide-1 on oxidative stress and Nrf2 signaling,” International Journal of Molecular Sciences, vol. 19, p. 26, 2017.C. Wang, L. Li, S. Liu et al., “GLP-1 receptor agonist ameliorates obesity-induced chronic kidney injury via restoring renal metabolism homeostasis,” PLoS One, vol. 13, article e0193473, 2018.F. Sun, S. Chai, L. Li et al., “Effects of glucagon-like peptide-1 receptor agonists on weight loss in patients with type 2 diabetes: a systematic review and network meta-analysis,” Journal Diabetes Research, vol. 2015, p. 157201, 2015.P. M. O’Neil, A. L. Birkenfeld, B. McGowan et al., “Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: a randomised, double-blind, placebo and active controlled, dose-ranging, phase 2 trial,” The Lancet, vol. 392, pp. 637–649, 2018.X. Pi-Sunyer, A. Astrup, K. Fujioka et al., “A randomized, controlled trial of 3.0 mg of liraglutide in weight management,” The New England Journal of Medicine, vol. 373, no. 1, pp. 11–22, 2015.J. Blundell, G. Finlayson, M. Axelsen et al., “Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity,” Diabetes, Obesity & Metabolism, vol. 19, pp. 1242–1251, 2017.J. S. Tronieri, T. A. Wadden, O. Walsh et al., “Effects of liraglutide on appetite, food preoccupation, and food liking: results of a randomized controlled trial,” International Journal of Obesity, vol. 44, pp. 353–361, 2020.A. J. Kastin, V. Akerstrom, and W. Pan, “Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier,” Journal of Molecular Neuroscience, vol. 18, pp. 7–14, 2002.L. van Bloemendaal, R. G. IJzerman, J. S. Ten Kulve et al., “GLP-1 receptor activation modulates appetite- and reward-related brain areas in humans,” Diabetes, vol. 63, pp. 4186–4196, 2014N. Siep, A. Roefs, A. Roebroeck, R. Havermans, M. L. Bonte, and A. Jansen, “Hunger is the best spice: an FMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex,” Behavioural Brain Research, vol. 198, pp. 149–158, 2009.J. D. Brown, D. McAnally, J. E. Ayala et al., “Oleoylethanolamide modulates glucagon-like peptide-1 receptor agonist signaling and enhances exendin-4-mediated weight loss in obese mice,” American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, vol. 315, pp. R595–R608, 2018.S. A. Schäfer, K. Müssig, H. Staiger et al., “A common genetic variant in WFS1 determines impaired glucagon-like peptide-1-induced insulin secretion,” Diabetologia, vol. 52, pp. 1075–1082, 2009M. Jensterle, B. Pirš, K. Goričar, V. Dolžan, and A. Janež, “Genetic variability in GLP-1 receptor is associated with inter-individual differences in weight lowering potential of liraglutide in obese women with PCOS: a pilot study,” European Journal of Clinical Pharmacology, vol. 71, pp. 817–824, 2015.J. B. Buse, M. Nauck, T. Forst et al., “Exenatide once weekly versus liraglutide once daily in patients with type 2 diabetes (DURATION-6): a randomised, open-label study,” The Lancet, vol. 381, no. 9861, pp. 117–124, 2013.K. M. Dungan, S. T. Povedano, T. Forst et al., “Once-weekly dulaglutide versus once-daily liraglutide in metformin-treated patients with type 2 diabetes (AWARD-6): a randomised, open-label, phase 3, non-inferiority trial,” The Lancet, vol. 384, pp. 1349–1357, 2014.R. E. Pratley, M. A. Nauck, A. H. Barnett et al., “Once-weekly albiglutide versus once-daily liraglutide in patients with type 2 diabetes inadequately controlled on oral drugs (HARMONY 7): a randomised, open-label, multicentre, non-inferiority phase 3 study,” The Lancet Diabetes and Endocrinology, vol. 2, no. 4, pp. 289–297, 2014.C. Brock, C. S. Hansen, J. Karmisholt et al., “Liraglutide treatment reduced interleukin-6 in adults with type 1 diabetes but did not improve established autonomic or polyneuropathy,” British Journal of Clinical Pharmacology, vol. 85, no. 11, pp. 2512–2523, 2019.L. G. Savchenko, N. I. Digtiar, L. G. Selikhova et al., “Liraglutide exerts an anti-inflammatory action in obese patients with type 2 diabetes,” Romanian Journal of Internal Medicine, vol. 57, pp. 233–240, 2019.H. Kanda, S. Tateya, Y. Tamori et al., “MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity,” The Journal of Clinical Investigation, vol. 116, no. 6, pp. 1494–1505, 2006.H. Hasita, Y. Komohara, H. Okabe et al., “Significance of alternatively activated macrophages in patients with intrahepatic cholangiocarcinoma,” Cancer Science, vol. 101, pp. 1913–1919, 2010.A. Sica and V. Bronte, “Altered macrophage differentiation and immune dysfunction in tumor development,” The Journal of Clinical Investigation, vol. 117, pp. 1155–1166, 2007.D. Shiraishi, Y. Fujiwara, Y. Komohara, H. Mizuta, and M. Takeya, “Glucagon-like peptide-1 (GLP-1) induces M2 polarization of human macrophages via STAT3 activation,” Biochemical and Biophysical Research Communications, vol. 425, pp. 304–308, 2012.L. T. Kim Chung, T. Hosaka, M. Yoshida et al., “Exendin-4, a GLP-1 receptor agonist, directly induces adiponectin expression through protein kinase A pathway and prevents inflammatory adipokine expression,” Biochemical and Biophysical Research Communications, vol. 390, pp. 613–618, 2009.E. Zhu, Y. Yang, J. Zhang et al., “Liraglutide suppresses obesity and induces brown fat-like phenotype via soluble guanylyl cyclase mediated pathway in vivo and in vitro,” Oncotarget, vol. 7, pp. 81077–81089, 2016.S. Krishnan, J. Kraehling, F. Eitner, A. Bénardeau, and P. Sandner, “The impact of the nitric oxide (NO)/soluble guanylyl cyclase (SGC) signaling cascade on kidney health and disease: a preclinical perspective,” International Journal of Molecular Sciences, vol. 19, p. 1712, 2018.J. Decara, P. Rivera, S. Arrabal et al., “Cooperative role of the glucagon-like peptide-1 receptor and Β3-adrenergic-mediated signalling on fat mass reduction through the downregulation of PKA/AKT/AMPK signalling in the adipose tissue and muscle of rats,” Acta Physiologica (Oxford, England), vol. 222, article e13008, 2018.T. Yokoi, K. Fukuo, O. Yasuda et al., “Apoptosis signal-regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells,” Diabetes, vol. 55, pp. 1660–1665, 2006.S. Blazer, E. Khankin, Y. Segev et al., “High glucose-induced replicative senescence: point of no return and effect of telomerase,” Biochemical and Biophysical Research Communications, vol. 296, pp. 93–101, 2002J. Liu, K. Huang, G.-Y. Cai et al., “Receptor for advanced glycation end-products promotes premature senescence of proximal tubular epithelial cells via activation of endoplasmic reticulum stress-dependent P21 signaling,” Cellular Signalling, vol. 26, pp. 110–121, 2014.R. E. Mouton and M. E. Venable, “Ceramide induces expression of the senescence histochemical marker, beta-galactosidase, in human fibroblasts,” Mechanisms of Ageing and Development, vol. 113, pp. 169–181, 2000.J. H. Ford, “Saturated fatty acid metabolism is key link between cell division, cancer, and senescence in cellular and whole organism aging,” Age, vol. 32, pp. 231–237, 2010.D. Shang, D. Sun, C. Shi et al., “Activation of epidermal growth factor receptor signaling mediates cellular senescence induced by certain pro-inflammatory cytokines,” Aging Cell, vol. 19, pp. 1–13, 2020.T. Sugizaki, S. Zhu, G. Guo et al., “Treatment of diabetic mice with the SGLT2 inhibitor TA-1887 antagonizes diabetic cachexia and decreases mortality,” npj Aging and Mechanisms of Disease, vol. 3, no. 1, p. 12, 2017.J. Campisi and F. d'Adda di Fagagna, “Cellular senescence: when bad things happen to good cells,” Nature Reviews. Molecular Cell Biology, vol. 8, no. 9, pp. 729–740, 2007.G. Nelson, J. Wordsworth, C. Wang et al., “A senescent cell bystander effect: senescence-induced senescence,” Aging Cell, vol. 11, pp. 345–349, 2012.R. Madonna, V. Doria, I. Minnucci, A. Pucci, D. S. Pierdomenico, and R. De Caterina, “Empagliflozin reduces the senescence of cardiac stromal cells and improves cardiac function in a murine model of diabetes,” Journal of Cellular and Molecular Medicine, vol. 24, pp. 12331–12340, 2020.K. Kitada, D. Nakano, H. Ohsaki et al., “Hyperglycemia causes cellular senescence via a SGLT2- and P21-dependent pathway in proximal tubules in the early stage of diabetic nephropathy,” Journal of Diabetes and its Complications, vol. 28, no. 5, pp. 604–611, 2014.H. Oeseburg, R. A. de Boer, H. Buikema, P. van der Harst, W. H. van Gilst, and H. H. W. Silljé, “Glucagon-like peptide 1 prevents reactive oxygen species-induced endothelial cell senescence through the activation of protein kinase A,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 30, pp. 1407–1414, 2010.P. Liao, D. Yang, D. Liu, and Y. Zheng, “GLP-1 and ghrelin attenuate high glucose/high lipid-induced apoptosis and senescence of human microvascular endothelial cells,” Cellular Physiology and Biochemistry, vol. 44, pp. 1842–1855, 2017.D. Verzola, M. T. Gandolfo, G. Gaetani et al., “Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy,” American Journal of Physiology Renal Physiology, vol. 295, no. 5, pp. F1563–F1573, 2008.B. M. Klinkhammer, R. Kramann, M. Mallau et al., “Mesenchymal stem cells from rats with chronic kidney disease exhibit premature senescence and loss of regenerative potential,” PLoS One, vol. 9, no. 3, article e92115, 2014.A. Tasanarong, S. Kongkham, and S. Khositseth, “Dual inhibiting senescence and epithelial-to-mesenchymal transition by erythropoietin preserve tubular epithelial cell regeneration and ameliorate renal fibrosis in unilateral ureteral obstruction,” BioMed Research International, vol. 2013, Article ID 308130, 2013.J. Liu, J.-R. Yang, Y.-N. He et al., “Accelerated senescence of renal tubular epithelial cells is associated with disease progression of patients with immunoglobulin A (IgA) nephropathy,” Translational Research, vol. 159, pp. 454–463, 2012.W.-J. Wang, G.-Y. Cai, and X.-M. Chen, “Cellular senescence, senescence-associated secretory phenotype, and chronic kidney disease,” Oncotarget, vol. 8, no. 38, pp. 64520–64533, 2017.C. Diaz, J. Toala, P. Barrera et al., “Explorando Nuevas Opciones Farmacológicas En El Tratamiento de La Diabetes Mellitus,” Archivos Venezolanos de Farmacología y Terapéutica, vol. 38, pp. 754–757, 2019L. Briceño Iragorry, L. A. Briceño, and B. G. Valero, “Obesidad ¿Es una realidad en Venezuela? Epidemiología Pandemia del siglo XXI,” Gaceta Médica de Caracas, vol. 120, pp. 93–107, 2020.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf1349957https://bonga.unisimon.edu.co/bitstreams/5527887c-34e2-4a0f-9932-c37c94fd1e91/downloade87c52ab2ff799ef3451eafb6cf448d2MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/a22426fd-e851-4bfa-a152-d28a339ad089/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/f7d3aaee-8570-4503-b62a-c07b9d03381c/download733bec43a0bf5ade4d97db708e29b185MD53TEXT2021_JofDR_SGLT2i-and-GLP-1RA.pdf.txt2021_JofDR_SGLT2i-and-GLP-1RA.pdf.txtExtracted texttext/plain93672https://bonga.unisimon.edu.co/bitstreams/fb4a7be5-dee0-41e8-b5e8-145a3cead7a7/downloadf163d4bd65e45e40a404fccdfb6bfd29MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain93672https://bonga.unisimon.edu.co/bitstreams/b02e4c59-25f5-4b29-9434-fa3036bc6ed5/downloadf163d4bd65e45e40a404fccdfb6bfd29MD56THUMBNAIL2021_JofDR_SGLT2i-and-GLP-1RA.pdf.jpg2021_JofDR_SGLT2i-and-GLP-1RA.pdf.jpgGenerated Thumbnailimage/jpeg5789https://bonga.unisimon.edu.co/bitstreams/713462eb-ffea-464f-b335-6038aceee17a/download7a2a2812d41604a463816f3a7840ba2cMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5789https://bonga.unisimon.edu.co/bitstreams/e2c8ab68-7ede-4165-976e-d6a1c2a77192/download7a2a2812d41604a463816f3a7840ba2cMD5720.500.12442/9525oai:bonga.unisimon.edu.co:20.500.12442/95252024-08-14 21:54:51.546http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u