Machine Learning approach applied to Human Activity Recognition – An application to the VanKasteren dataset
Reminders are a core component of many assistive technology systems and are aimed specifically at helping people with dementia function more independently by compensating for cognitive deficits. These technologies are often utilized for prospective reminding, reminiscence, or within coaching-based s...
- Autores:
-
Ariza-Colpas, Paola
Oñate-Bowen, Alvaro Agustín
Suarez-Brieva, Eydy del Carmen
Oviedo-Carrascal, Ana
Urina Triana, Miguel
Piñeres-Melo, Marlon
Butt, Shariq Aziz,
Collazos Morales, Carlos Andrés
Ramayo González, Ramón Enrique
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/8605
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/8605
https://doi.org/10.1016/j.procs.2021.07.070
https://www.sciencedirect.com/science/article/pii/S1877050921014733?via%3Dihub
- Palabra clave:
- Machine learning
HAR
ADL
Human Activity Recognition
Activity Daily Living
VanKasteren Dataset
- Rights
- openAccess
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_69021b2202081f029ab5d88ed97bb54f |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/8605 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Machine Learning approach applied to Human Activity Recognition – An application to the VanKasteren dataset |
title |
Machine Learning approach applied to Human Activity Recognition – An application to the VanKasteren dataset |
spellingShingle |
Machine Learning approach applied to Human Activity Recognition – An application to the VanKasteren dataset Machine learning HAR ADL Human Activity Recognition Activity Daily Living VanKasteren Dataset |
title_short |
Machine Learning approach applied to Human Activity Recognition – An application to the VanKasteren dataset |
title_full |
Machine Learning approach applied to Human Activity Recognition – An application to the VanKasteren dataset |
title_fullStr |
Machine Learning approach applied to Human Activity Recognition – An application to the VanKasteren dataset |
title_full_unstemmed |
Machine Learning approach applied to Human Activity Recognition – An application to the VanKasteren dataset |
title_sort |
Machine Learning approach applied to Human Activity Recognition – An application to the VanKasteren dataset |
dc.creator.fl_str_mv |
Ariza-Colpas, Paola Oñate-Bowen, Alvaro Agustín Suarez-Brieva, Eydy del Carmen Oviedo-Carrascal, Ana Urina Triana, Miguel Piñeres-Melo, Marlon Butt, Shariq Aziz, Collazos Morales, Carlos Andrés Ramayo González, Ramón Enrique |
dc.contributor.author.none.fl_str_mv |
Ariza-Colpas, Paola Oñate-Bowen, Alvaro Agustín Suarez-Brieva, Eydy del Carmen Oviedo-Carrascal, Ana Urina Triana, Miguel Piñeres-Melo, Marlon Butt, Shariq Aziz, Collazos Morales, Carlos Andrés Ramayo González, Ramón Enrique |
dc.subject.eng.fl_str_mv |
Machine learning HAR ADL Human Activity Recognition Activity Daily Living VanKasteren Dataset |
topic |
Machine learning HAR ADL Human Activity Recognition Activity Daily Living VanKasteren Dataset |
description |
Reminders are a core component of many assistive technology systems and are aimed specifically at helping people with dementia function more independently by compensating for cognitive deficits. These technologies are often utilized for prospective reminding, reminiscence, or within coaching-based systems. Traditionally, reminders have taken the form of nontechnology based aids, such as diaries, notebooks, cue cards and white boards. This article is based on the use of machine learning algorithms for the detection of Alzheimer’s disease. In the experimentation, the LWL, SimpleLogistic, Logistic, MultiLayerPercepton and HiperPipes algorithms were used. The result showed that the LWL algorithm produced the following results: Accuracy 98.81%, Precission 100%, Recall 97.62% and F- measure 98.80% |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-01T21:49:43Z |
dc.date.available.none.fl_str_mv |
2021-10-01T21:49:43Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.eng.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.spa.spa.fl_str_mv |
Artículo científico |
dc.identifier.issn.none.fl_str_mv |
18770509 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/8605 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1016/j.procs.2021.07.070 |
dc.identifier.url.none.fl_str_mv |
https://www.sciencedirect.com/science/article/pii/S1877050921014733?via%3Dihub |
identifier_str_mv |
18770509 |
url |
https://hdl.handle.net/20.500.12442/8605 https://doi.org/10.1016/j.procs.2021.07.070 https://www.sciencedirect.com/science/article/pii/S1877050921014733?via%3Dihub |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.eng.fl_str_mv |
pdf |
dc.publisher.spa.fl_str_mv |
Elsevier |
dc.source.eng.fl_str_mv |
Procedia Computer Science |
dc.source.none.fl_str_mv |
Vol. 191, (2021) |
institution |
Universidad Simón Bolívar |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/5f484418-e503-480c-8c94-10a275d44a9e/download https://bonga.unisimon.edu.co/bitstreams/6766c62e-ee04-4bb4-a98e-0cc7bdb55b39/download https://bonga.unisimon.edu.co/bitstreams/03e157b8-c0ee-4f0f-99cd-03a120387ddc/download https://bonga.unisimon.edu.co/bitstreams/438a3095-5a85-4c9d-995a-c6490f21cfa5/download https://bonga.unisimon.edu.co/bitstreams/af1b159f-06cd-47d8-bc58-77ef8888804b/download https://bonga.unisimon.edu.co/bitstreams/55c5bc11-37e8-4422-ac6b-e44f9b4dd7e1/download https://bonga.unisimon.edu.co/bitstreams/89d66f23-64d8-49e6-bc98-2437dee8a853/download |
bitstream.checksum.fl_str_mv |
9b5d8c16e512ed61d2bafa771e283c35 4460e5956bc1d1639be9ae6146a50347 733bec43a0bf5ade4d97db708e29b185 6d93d3216dc4a7f5df47d4876fbec4d3 36c6f0b2061da514c400c0bc2749b5cf 0e1cbdd05329b38a5e4a1a22bdfbf3ee 285f46e41b4c9be3cfcc4084b7e2bbee |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076095494881280 |
spelling |
Ariza-Colpas, Paolab278dc48-7bf5-4214-9a4d-82d62cd91884Oñate-Bowen, Alvaro Agustína7a4dcf7-8485-44e9-9804-31d6d448aa2bSuarez-Brieva, Eydy del Carmen0a97329d-3147-4b43-8016-115c47603699Oviedo-Carrascal, Anaa75be05e-e24d-4414-a9a7-e60cfe7faa19Urina Triana, Miguel1afc0065-d873-4d52-883f-11592a768bbfPiñeres-Melo, Marlonfffea554-a38b-423d-afba-716d93881eeeButt, Shariq Aziz,53d2cd3e-db34-43ca-a3d9-3d60a1db24f3Collazos Morales, Carlos Andrésf791ea21-2cd5-4cf7-b24d-b7372fab23bcRamayo González, Ramón Enriqueb0f77877-7958-474b-9f0c-ebcc38befb892021-10-01T21:49:43Z2021-10-01T21:49:43Z202118770509https://hdl.handle.net/20.500.12442/8605https://doi.org/10.1016/j.procs.2021.07.070https://www.sciencedirect.com/science/article/pii/S1877050921014733?via%3DihubReminders are a core component of many assistive technology systems and are aimed specifically at helping people with dementia function more independently by compensating for cognitive deficits. These technologies are often utilized for prospective reminding, reminiscence, or within coaching-based systems. Traditionally, reminders have taken the form of nontechnology based aids, such as diaries, notebooks, cue cards and white boards. This article is based on the use of machine learning algorithms for the detection of Alzheimer’s disease. In the experimentation, the LWL, SimpleLogistic, Logistic, MultiLayerPercepton and HiperPipes algorithms were used. The result showed that the LWL algorithm produced the following results: Accuracy 98.81%, Precission 100%, Recall 97.62% and F- measure 98.80%pdfengElsevierAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Procedia Computer ScienceVol. 191, (2021)Machine learningHARADLHuman Activity RecognitionActivity Daily LivingVanKasteren DatasetMachine Learning approach applied to Human Activity Recognition – An application to the VanKasteren datasetinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Sohn, T., Li, K. A., Lee, G., Smith, I., Scott, J., & Griswold, W. G. (2005, September). Place-its: A study of location-based reminders on mobile phones. In International Conference on Ubiquitous Computing (pp. 232–250). Springer, Berlin, Heidelberg.Sumi Helal, Carlos Giraldo, Youssef Kaddoura, Choonhwa Lee, Hicham El Zabadani, and William Mann. Smart phone based cognitive assistant. In UbiHealth 2003: The 2nd International Workshop on Ubiquitous Computing for Pervasive Healthcare Applications, 2003.Pollock P.M., Harper U.L., Hansen K.S., Yudt L.M., Stark M., Robbins C.M., Salem G. High frequency of BRAF mutations in nevi Nature genetics, 33 (1) (2003), pp. 19-20Oliver Zangwill Centre Neuropsychological Rehabilitation Accessed December 2014. NeuroPage. Online, http://www.neuropage.nhs.uk/, 2014.Barbara A Wilson, Jonathan J Evans, Hazel Emslie, Vlastimil Malinek Evaluation of neuropage: a new memory aid Journal of Neurology, Neurosurgery & Psychiatry, 63 (1) (1997), pp. 113-115Barbara A Wilson, Helena Scott, Jonathan Evans, Hazel Emslie Preliminary report of a neuropage service within a health care system NeuroRehabilitation, 18 (1) (2003), pp. 3-8Wilson HC Emslie, K Quirk, JJ Evans Reducing everyday memory and planning problems by means of a paging system: a randomised control crossover study Journal of Neurology, Neurosurgery & Psychiatry, 70 (4) (2001), pp. 477-482Zhou J., Gennatas E.D., Kramer J.H., Miller B.L., Seeley W.W. Predicting regional neurodegeneration from the healthy brain functional connectome Neuron, 73 (6) (2012), pp. 1216-1227SASMITA ati nneli annisto, arita annele oivunen, and aritta nneli lim ki. se of mobile phone text message reminders in health care services: A narrative literature review Journal of medical Internet research, 16 (10) (2014)Marcia Vervloet, Liset van Dijk, Jacqueline Santen-Reestman, Bas van Vlijmen, Marcel L Bouvy, Dinny H de Bakker Improving medication adherence in diabetes type 2 patients through real time medication monitoring: a randomised controlled trial to evaluate the effect of monitoring patients’ medication use combined with short message service (sms) reminders B C health services research, 11 (1) (2011), p. 5Rebecca Guy, Jane Hocking, Handan Wand, Sam Stott, Hammad Ali, John Kaldor How effective are short message service reminders at increasing clinic attendance? a meta-analysis and systematic review Health services research, 47 (2) (2012), pp. 614-632McLean, S., Gee, M., Booth, A., Salway, S., Nancarrow, S., Cobb, M., & Bhanbhro, S. (2014). Targeting the Use of Reminders and Notifications for Uptake by Populations (TURNUP): a systematic review and evidence synthesis.De Jongh T., Gurol‐Urganci I., Vodopivec‐Jamsek V., Car J., Atun R. Mobile phone messaging for facilitating self‐ management of long‐term illnesses Cochrane Database of Systematic Reviews (2012) (12)Sonja O’Neill, Sarah ason, Guido Parente, Ark P Donnelly, Christopher D Nugent, Sally McClean, Bryan Scotney, David Craig Video reminders as cognitive prosthetics for people with dementia Ageing International, 36 (2) (2011), pp. 267-282Zhang, S.I. Clean, C.D. Nugent, S. O’neill, P. Donnelly, L. Galway, B.W. Scotney, I. Cleland “Predictive Model for Assistive Technology Adoption for People with Dementia” Journal of Biomedical and Health Informatics (99) (2013), p. 1,1Hartin P.J., Nugent C.D., McClean S.I., Cleland I., Norton M.C., Sanders C., Tschanz J.T. Identification of Ideal Contexts to Issue Reminders for Persons with Dementia, IWAAL (2014), pp. 369-376Cleland I., Nugent C.D., McClean S.I., Hartin P.J., Sanders C., Donnelly M., Tschanz J.T. Predicting Technology Adoption in People with Dementia; Initial Results from the TAUT Project Ambient Assisted Living and Daily Activities, Springer International Publishing Soft Computing for Hybrid Intelligent Systems (2014), pp. 266-274 2008Soft Computing for Hybrid Intelligent Systems Oscar Castillo, Patricia Melin, Janusz Kacprzyk, Witold Pedrycz (Eds.), Studies in Computational Intelligence, 154, Springer (2008) ISBN 978-3-540-70811-7Ariza-Colpas, P., Oviedo-Carrascal, A. I., & De-la-hoz-Franco, E. (2019, July). Using K-Means Algorithm for Description Analysis of Text in RSS News Format. In International Conference on Data Mining and Big Data (pp. 162–169). Springer, Singapore.Ariza-Colpas, P., Morales-Ortega, R., Piñeres-Melo, M., De la Hoz-Franco, E., Echeverri-Ocampo, I., & Salas-Navarro, K. (2019, July). Parkinson Disease Analysis Using Supervised and Unsupervised Techniques. In International Conference on Swarm Intelligence (pp. 191–199). Springer, ChamCalabria-Sarmiento, J. C., Ariza-Colpas, P., Pineres-Melo, M., Ayala-Mantilla, C., Urina-Triana, M., Morales-Ortega, R., … & EcheverriOcampo, I. (2018). Software applications to health sector: a systematic review of literature.Piñeres-Melo, M. A., Ariza-Colpas, P. P., Nieto-Bernal, W., & Morales-Ortega, R. (2019, July). SSwWS: Structural Model of Information Architecture. In International Conference on Swarm Intelligence (pp. 400–410). Springer, Cham.Ho T.K. The random subspace method for constructing decision forests IEEE Transactions on Pattern Analysis and Machine Intelligence, 20 (8) (1998), pp. 832-844 https://doi.org/10.1109/34.709601ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf2046806https://bonga.unisimon.edu.co/bitstreams/5f484418-e503-480c-8c94-10a275d44a9e/download9b5d8c16e512ed61d2bafa771e283c35MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/6766c62e-ee04-4bb4-a98e-0cc7bdb55b39/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/03e157b8-c0ee-4f0f-99cd-03a120387ddc/download733bec43a0bf5ade4d97db708e29b185MD53TEXT2021_ART_Machine Learning approach applied to Human Activity.PDF.txt2021_ART_Machine Learning approach applied to Human Activity.PDF.txtExtracted texttext/plain6https://bonga.unisimon.edu.co/bitstreams/438a3095-5a85-4c9d-995a-c6490f21cfa5/download6d93d3216dc4a7f5df47d4876fbec4d3MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain12https://bonga.unisimon.edu.co/bitstreams/af1b159f-06cd-47d8-bc58-77ef8888804b/download36c6f0b2061da514c400c0bc2749b5cfMD56THUMBNAIL2021_ART_Machine Learning approach applied to Human Activity.PDF.jpg2021_ART_Machine Learning approach applied to Human Activity.PDF.jpgGenerated Thumbnailimage/jpeg14182https://bonga.unisimon.edu.co/bitstreams/55c5bc11-37e8-4422-ac6b-e44f9b4dd7e1/download0e1cbdd05329b38a5e4a1a22bdfbf3eeMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg4665https://bonga.unisimon.edu.co/bitstreams/89d66f23-64d8-49e6-bc98-2437dee8a853/download285f46e41b4c9be3cfcc4084b7e2bbeeMD5720.500.12442/8605oai:bonga.unisimon.edu.co:20.500.12442/86052024-08-14 21:51:58.845http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |