Prediction of Epitopes in the Proteome of Helicobacter pylori
Helicobacter pylori (H. pylori) is classified by the World Health Organization (WHO) as a group I carcinogen and is one of the most efficient human pathogens with over half of the world's population colonized by this gram-negative spiral bacterium. H. pylori can cause a chronic infection in the...
- Autores:
-
Navarro-Quiroz, Elkin
Navarro-Quiroz, Roberto
España-Puccini, Pierine
Villarreal, José Luis
Díaz Perez, Anderson
Fernandez Ponce, Cecilia
Bilbao, Jorge
Vasquez, Lucy
Mendoza, Dary Luz
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/2123
- Acceso en línea:
- http://hdl.handle.net/20.500.12442/2123
- Palabra clave:
- Helicobacter pylori
Epitopes
Chronic infection in the stomach
- Rights
- License
- Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id |
USIMONBOL2_6702283a9211cf8f363fd428f3e543b2 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/2123 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Prediction of Epitopes in the Proteome of Helicobacter pylori |
title |
Prediction of Epitopes in the Proteome of Helicobacter pylori |
spellingShingle |
Prediction of Epitopes in the Proteome of Helicobacter pylori Helicobacter pylori Epitopes Chronic infection in the stomach |
title_short |
Prediction of Epitopes in the Proteome of Helicobacter pylori |
title_full |
Prediction of Epitopes in the Proteome of Helicobacter pylori |
title_fullStr |
Prediction of Epitopes in the Proteome of Helicobacter pylori |
title_full_unstemmed |
Prediction of Epitopes in the Proteome of Helicobacter pylori |
title_sort |
Prediction of Epitopes in the Proteome of Helicobacter pylori |
dc.creator.fl_str_mv |
Navarro-Quiroz, Elkin Navarro-Quiroz, Roberto España-Puccini, Pierine Villarreal, José Luis Díaz Perez, Anderson Fernandez Ponce, Cecilia Bilbao, Jorge Vasquez, Lucy Mendoza, Dary Luz |
dc.contributor.author.none.fl_str_mv |
Navarro-Quiroz, Elkin Navarro-Quiroz, Roberto España-Puccini, Pierine Villarreal, José Luis Díaz Perez, Anderson Fernandez Ponce, Cecilia Bilbao, Jorge Vasquez, Lucy Mendoza, Dary Luz |
dc.subject.eng.fl_str_mv |
Helicobacter pylori Epitopes Chronic infection in the stomach |
topic |
Helicobacter pylori Epitopes Chronic infection in the stomach |
description |
Helicobacter pylori (H. pylori) is classified by the World Health Organization (WHO) as a group I carcinogen and is one of the most efficient human pathogens with over half of the world's population colonized by this gram-negative spiral bacterium. H. pylori can cause a chronic infection in the stomach during early childhood that persists throughout life due to diverse mechanisms of immune response evasion. H. pylori has several factors strongly associated with increased risk of disease such as toxins, adhesins, and chemoattractants, some of which are highly polymorphic, phase variable, and have different functions. Conventional treatments involve the use of antibiotics. However, treatment frequently fails due to the resistance H. pylori has progressively developed to antibiotics. This creates the need for different treatments made possible by identifying new therapeutic targets in the pathogen’s genome. The purpose of this study was an in silico prediction of T- and B- epitopes in H. pylori proteins. Twenty-two external membrane proteins from H. pylori Strain 26695 (accession number NC_000915) were identified using the web tool Vaxign (http://www.violinet.org/vaxign/). A total of one-hundred epitopes (60 class I epitopes and 40 class II epitopes) that could be used to develop novel non-antibiotics drugs for an H. pylori infection were predicted. |
publishDate |
2018 |
dc.date.accessioned.none.fl_str_mv |
2018-06-12T19:32:48Z |
dc.date.available.none.fl_str_mv |
2018-06-12T19:32:48Z |
dc.date.issued.none.fl_str_mv |
2018-06 |
dc.type.eng.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
19169744 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12442/2123 |
identifier_str_mv |
19169744 |
url |
http://hdl.handle.net/20.500.12442/2123 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional |
rights_invalid_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
dc.publisher.eng.fl_str_mv |
Canadian Center of Science and Education |
dc.source.eng.fl_str_mv |
Global Journal of Health Science Vol. 10, No.7 (2018) |
institution |
Universidad Simón Bolívar |
dc.source.uri.eng.fl_str_mv |
http://www.ccsenet.org/journal/index.php/gjhs/article/view/75881 |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/781f2125-76f2-4d2d-8e10-b75e8ea7b1db/download https://bonga.unisimon.edu.co/bitstreams/b283fa5b-f73b-4a3d-8c59-f79911e64799/download https://bonga.unisimon.edu.co/bitstreams/1ce36a49-7f1d-4b25-a844-003435457003/download https://bonga.unisimon.edu.co/bitstreams/34b59bf6-b2d3-46ec-a530-9360a54cb6ae/download https://bonga.unisimon.edu.co/bitstreams/2e53d0d3-0c83-4835-8c31-096ccbe3be2d/download https://bonga.unisimon.edu.co/bitstreams/6c70d1c1-e94f-4953-8449-7b10e7c014e9/download |
bitstream.checksum.fl_str_mv |
2fd6eef233d528c44eb5807cd9699aec 3fdc7b41651299350522650338f5754d 1d4910ace4661db81915b37175dea767 d41a23b743b796c6d0885cea59f15e08 fd505407a39de6bc9dd9d6734be603f6 199d2b132c5016e8865499133dee54ea |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076097522827264 |
spelling |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Navarro-Quiroz, Elkinb7f1ab18-ac07-40cf-9df1-f25f0c54e259-1Navarro-Quiroz, Robertob6533240-1b1b-40e4-9123-44fefcab6c1e-1España-Puccini, Pierinee716f995-cc83-4bbe-998e-255729e97108-1Villarreal, José Luise34c06d0-895a-4d77-ad66-b04aa0ca21d6-1Díaz Perez, Anderson541a93ef-4bd1-4194-8527-054e93ff648c-1Fernandez Ponce, Cecilia84dcbd1c-f973-44f4-9f41-e8a9057e69c6-1Bilbao, Jorge868dd875-9edb-4cf8-9f6b-b74718d7aff2-1Vasquez, Lucy7a712698-ffe1-4dd4-ba10-f61124f6a566-1Mendoza, Dary Luz9970c47f-e452-41b2-a844-a2db13824df4-12018-06-12T19:32:48Z2018-06-12T19:32:48Z2018-0619169744http://hdl.handle.net/20.500.12442/2123Helicobacter pylori (H. pylori) is classified by the World Health Organization (WHO) as a group I carcinogen and is one of the most efficient human pathogens with over half of the world's population colonized by this gram-negative spiral bacterium. H. pylori can cause a chronic infection in the stomach during early childhood that persists throughout life due to diverse mechanisms of immune response evasion. H. pylori has several factors strongly associated with increased risk of disease such as toxins, adhesins, and chemoattractants, some of which are highly polymorphic, phase variable, and have different functions. Conventional treatments involve the use of antibiotics. However, treatment frequently fails due to the resistance H. pylori has progressively developed to antibiotics. This creates the need for different treatments made possible by identifying new therapeutic targets in the pathogen’s genome. The purpose of this study was an in silico prediction of T- and B- epitopes in H. pylori proteins. Twenty-two external membrane proteins from H. pylori Strain 26695 (accession number NC_000915) were identified using the web tool Vaxign (http://www.violinet.org/vaxign/). A total of one-hundred epitopes (60 class I epitopes and 40 class II epitopes) that could be used to develop novel non-antibiotics drugs for an H. pylori infection were predicted.engCanadian Center of Science and EducationGlobal Journal of Health ScienceVol. 10, No.7 (2018)http://www.ccsenet.org/journal/index.php/gjhs/article/view/75881Helicobacter pyloriEpitopesChronic infection in the stomachPrediction of Epitopes in the Proteome of Helicobacter pyloriarticlehttp://purl.org/coar/resource_type/c_6501Ayraud, S., Janvier, B., & Fauchère, J.-L. (2002). Experimental colonization of mice by fresh clinical isolates of Helicobacter pylori is not influenced by the cagA status and the vacA genotype. FEMS Immunology and Medical Microbiology, 34(3), 169-172. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12423767Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Wheeler, D. L. (2006). GenBank. Nucleic Acids Research, 34(Database issue), D16-20. https://doi.org/10.1093/nar/gkj157Chen, F., Mackey, A. J., Stoeckert, C. J., & Roos, D. S. (2006). OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Research, 34(Database issue), D363-8. https://doi.org/10.1093/nar/gkj123Fallone, C. A., Chiba, N., van Zanten, S. V., Fischbach, L., Gisbert, J. P., Hunt, R. H., … Marshall, J. K. (2016). The Toronto Consensus for the Treatment of Helicobacter pylori Infection in Adults. Gastroenterology, 151(1), 51-69.e14. https://doi.org/10.1053/j.gastro.2016.04.006Ford, A. C., & Axon, A. T. R. (2010). Epidemiology of Helicobacter pylori infection and Public Health Implications. Helicobacter, 15, 1-6. https://doi.org/10.1111/j.1523-5378.2010.00779.xHe, Y., Xiang, Z., & Mobley, H. L. T. (2010). Vaxign: The first web-based vaccine design program for reverse vaccinology and applications for vaccine development. Journal of Biomedicine and Biotechnology, 2010. https://doi.org/10.1155/2010/297505Hooi, J. K. Y., Lai, W. Y., Ng, W. K., Suen, M. M. Y., Underwood, F. E., Tanyingoh, D., … Ng, S. C. (2017). Global Prevalence of Helicobacter pylori Infection: Systematic Review and Meta-Analysis. Gastroenterology, 153(2), 420-429. https://doi.org/10.1053/j.gastro.2017.04.022Jemilohun, A. C., & Otegbayo, J. A. (2016). Helicobacter pylori infection: Past, present and future. Pan African Medical Journal. African Field Epidemiology Network. https://doi.org/10.11604/pamj.2016.23.216.8852Kabir, S. (2011). The Role of Interleukin-17 in the Helicobacter pylori Induced Infection and Immunity. Helicobacter, 16(1), 1-8. https://doi.org/10.1111/j.1523-5378.2010.00812.xLiao, Y., Deng, J., Zhang, A., Zhou, M., Hu, Y., Chen, H., & Jin, M. (2009). Immunoproteomic analysis of outer membrane proteins and extracellular proteins of Actinobacillus pleuropneumoniae JL03 serotype 3. BMC Microbiology, 9(1), 172. https://doi.org/10.1186/1471-2180-9-172Mégraud, F. (2012). The challenge of Helicobacter pylori resistance to antibiotics: the comeback of bismuth-based quadruple therapy. Therapeutic Advances in Gastroenterology, 5(2), 103-109. https://doi.org/10.1177/1756283X11432492Moss, S. F., Moise, L., Lee, D. S., Kim, W., Zhang, S., Lee, J., … De Groot, A. S. (2011). HelicoVax: epitope-based therapeutic Helicobacter pylori vaccination in a mouse model. Vaccine, 29(11), 2085–2091. https://doi.org/10.1016/j.vaccine.2010.12.130Ni, X. D., Wang, N., Liu, Y. J., & Lu, C. P. (2010). Immunoproteomics of extracellular proteins of the Aeromonas hydrophila China vaccine strain J-1 reveal a highly immunoreactive outer membrane protein. FEMS Immunology and Medical Microbiology, 58(3), 363–373. https://doi.org/10.1111/j.1574-695X.2009.00646.xPilotto, A., & Franceschi, M. (2014). Helicobacter pylori infection in older people. World Journal of Gastroenterology, 20(21), 6364-6373. https://doi.org/10.3748/wjg.v20.i21.6364Pruitt, K. D., Tatusova, T., & Maglott, D. R. (2005). NCBI Reference Sequence (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Research, 33(Database issue), D501-4. https://doi.org/10.1093/nar/gki025Refaeli, R., Chodick, G., Haj, S., Goren, S., Shalev, V., & Muhsen, K. (2018). Relationships of H. pylori infection and its related gastroduodenal morbidity with metabolic syndrome: a large cross-sectional study. Scientific Reports, 8(1), 4088. https://doi.org/10.1038/s41598-018-22198-9Sachdeva, G., Kumar, K., Jain, P., & Ramachandran, S. (2005). SPAAN: a software program for prediction of adhesins and adhesin-like proteins using neural networks. Bioinformatics, 21(4), 483-491. https://doi.org/10.1093/bioinformatics/bti028Spohn, G., & Scarlato, V. (2001). Motility, Chemotaxis, and Flagella. Helicobacter pylori: Physiology and Genetics. ASM Press. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21290725Xiang, Z., & He, Y. (2009). Vaxign: a web-based vaccine target design program for reverse vaccinology. Procedia in Vaccinology, 1(1), 23-29. https://doi.org/10.1016/j.provac.2009.07.005Xiang, Z., & He, Y. (2013). Genome-wide prediction of vaccine targets for human herpes simplex viruses using Vaxign reverse vaccinology. BMC Bioinformatics, 14 Suppl 4(4), S2. https://doi.org/10.1186/1471-2105-14-S4-S2Yu, N. Y., Wagner, J. R., Laird, M. R., Melli, G., Rey, S., Lo, R., … Brinkman, F. S. L. (2010). PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics (Oxford, England), 26(13), 1608-1615.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf196136https://bonga.unisimon.edu.co/bitstreams/781f2125-76f2-4d2d-8e10-b75e8ea7b1db/download2fd6eef233d528c44eb5807cd9699aecMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/b283fa5b-f73b-4a3d-8c59-f79911e64799/download3fdc7b41651299350522650338f5754dMD52TEXTPrediction of Epitopes in the Proteome.pdf.txtPrediction of Epitopes in the Proteome.pdf.txtExtracted texttext/plain28116https://bonga.unisimon.edu.co/bitstreams/1ce36a49-7f1d-4b25-a844-003435457003/download1d4910ace4661db81915b37175dea767MD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain28605https://bonga.unisimon.edu.co/bitstreams/34b59bf6-b2d3-46ec-a530-9360a54cb6ae/downloadd41a23b743b796c6d0885cea59f15e08MD55THUMBNAILPrediction of Epitopes in the Proteome.pdf.jpgPrediction of Epitopes in the Proteome.pdf.jpgGenerated Thumbnailimage/jpeg1632https://bonga.unisimon.edu.co/bitstreams/2e53d0d3-0c83-4835-8c31-096ccbe3be2d/downloadfd505407a39de6bc9dd9d6734be603f6MD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5274https://bonga.unisimon.edu.co/bitstreams/6c70d1c1-e94f-4953-8449-7b10e7c014e9/download199d2b132c5016e8865499133dee54eaMD5620.500.12442/2123oai:bonga.unisimon.edu.co:20.500.12442/21232024-07-25 03:05:50.768open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4= |