Classification of Parkinson's disease patients based on spectrogram using local binary pattern descriptors

Extreme learning machine is an algorithm that has shown a good performance facing classi cation and regression problems. It has gained great acceptance by the scienti c community due to the simplicity of the model and its sola great generalization capacity. This work proposes the use of extreme lear...

Full description

Autores:
Gelvez-Almeida, E
Váasquez-Coronel, A
Guatelli, R
Aubin, V
Mora, M
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/13159
Acceso en línea:
https://hdl.handle.net/20.500.12442/13159
https://doi.org/10.1088/1742-6596/2153/1/012014
Palabra clave:
Parkinson's disease patients
Local binary pattern descriptors
Extreme learning machine
Rights
openAccess
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_5c71148c94d9b9a66ec651f4e6f8ecaa
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/13159
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.spa.fl_str_mv Classification of Parkinson's disease patients based on spectrogram using local binary pattern descriptors
title Classification of Parkinson's disease patients based on spectrogram using local binary pattern descriptors
spellingShingle Classification of Parkinson's disease patients based on spectrogram using local binary pattern descriptors
Parkinson's disease patients
Local binary pattern descriptors
Extreme learning machine
title_short Classification of Parkinson's disease patients based on spectrogram using local binary pattern descriptors
title_full Classification of Parkinson's disease patients based on spectrogram using local binary pattern descriptors
title_fullStr Classification of Parkinson's disease patients based on spectrogram using local binary pattern descriptors
title_full_unstemmed Classification of Parkinson's disease patients based on spectrogram using local binary pattern descriptors
title_sort Classification of Parkinson's disease patients based on spectrogram using local binary pattern descriptors
dc.creator.fl_str_mv Gelvez-Almeida, E
Váasquez-Coronel, A
Guatelli, R
Aubin, V
Mora, M
dc.contributor.author.none.fl_str_mv Gelvez-Almeida, E
Váasquez-Coronel, A
Guatelli, R
Aubin, V
Mora, M
dc.subject.spa.fl_str_mv Parkinson's disease patients
Local binary pattern descriptors
Extreme learning machine
topic Parkinson's disease patients
Local binary pattern descriptors
Extreme learning machine
description Extreme learning machine is an algorithm that has shown a good performance facing classi cation and regression problems. It has gained great acceptance by the scienti c community due to the simplicity of the model and its sola great generalization capacity. This work proposes the use of extreme learning machine neural networks to carry out the classi cation between Parkinson's disease patients and healthy individuals. The descriptor used corresponds to the feature vector generated applying the local binary Pattern algorithm to the grayscale spectrograms. The spectrograms are obtained from the audio signal samples from the considered repository. Experiments are conducted with single hidden layer and multilayer extreme learning machine networks comparing the results of each structure. Results show that hierarchical extreme learning machine with three hidden layers has a better general performance over multilayer extreme learning machine networks and a single hidden layer extreme learning machine. The rate of success obtained is within the ranges presented in the literature. However, the hierarchical network training time is considerably faster compared to multilayer networks of three or two hidden layers.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-08-18T14:29:01Z
dc.date.available.none.fl_str_mv 2023-08-18T14:29:01Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.spa.spa.fl_str_mv Artículo científico
dc.identifier.citation.spa.fl_str_mv E Gelvez-Almeida et al 2022 J. Phys.: Conf. Ser. 2153 012014
dc.identifier.issn.none.fl_str_mv 17426596
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/13159
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1088/1742-6596/2153/1/012014
identifier_str_mv E Gelvez-Almeida et al 2022 J. Phys.: Conf. Ser. 2153 012014
17426596
url https://hdl.handle.net/20.500.12442/13159
https://doi.org/10.1088/1742-6596/2153/1/012014
dc.language.iso.spa.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv pdf
dc.publisher.spa.fl_str_mv IOP Publishing
institution Universidad Simón Bolívar
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/6e0d5dd8-fbaa-4feb-8c7e-55c51bc596b4/download
https://bonga.unisimon.edu.co/bitstreams/4c757409-00ef-435a-b554-230995416efa/download
https://bonga.unisimon.edu.co/bitstreams/ddcc5bf6-3e17-4baa-a7e4-c52fce1b8ea0/download
https://bonga.unisimon.edu.co/bitstreams/2f060e7e-df56-41f2-a561-268dab5ee4f5/download
https://bonga.unisimon.edu.co/bitstreams/04b21336-227d-45c6-b33c-d293e0cbdd6e/download
https://bonga.unisimon.edu.co/bitstreams/e4c2bce1-18d3-4ca3-b777-e4ac11896574/download
https://bonga.unisimon.edu.co/bitstreams/b21ee7f3-c754-42ed-820e-586b54133389/download
bitstream.checksum.fl_str_mv 07f0838f6d8f27f68cd71fd59833bf55
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
86a95ca9a7fdf6fe54d7e97931052d1a
86a95ca9a7fdf6fe54d7e97931052d1a
0c5af808171c9ae26a056a110db5bef0
0c5af808171c9ae26a056a110db5bef0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076146593038336
spelling Gelvez-Almeida, E55062614-d175-4da1-834a-d7e54dcc92deVáasquez-Coronel, Af7c2bdc1-bcb1-415e-bd60-bd6692e8c51dGuatelli, Rc3a24873-a22a-43d3-bde8-53c41336ca7aAubin, Vd61fe27c-05b7-463b-9ee7-7c16aac8f71cMora, M630644e5-97cc-482b-b5d0-8f65851e33992023-08-18T14:29:01Z2023-08-18T14:29:01Z2022E Gelvez-Almeida et al 2022 J. Phys.: Conf. Ser. 2153 01201417426596https://hdl.handle.net/20.500.12442/13159https://doi.org/10.1088/1742-6596/2153/1/012014Extreme learning machine is an algorithm that has shown a good performance facing classi cation and regression problems. It has gained great acceptance by the scienti c community due to the simplicity of the model and its sola great generalization capacity. This work proposes the use of extreme learning machine neural networks to carry out the classi cation between Parkinson's disease patients and healthy individuals. The descriptor used corresponds to the feature vector generated applying the local binary Pattern algorithm to the grayscale spectrograms. The spectrograms are obtained from the audio signal samples from the considered repository. Experiments are conducted with single hidden layer and multilayer extreme learning machine networks comparing the results of each structure. Results show that hierarchical extreme learning machine with three hidden layers has a better general performance over multilayer extreme learning machine networks and a single hidden layer extreme learning machine. The rate of success obtained is within the ranges presented in the literature. However, the hierarchical network training time is considerably faster compared to multilayer networks of three or two hidden layers.pdfengIOP PublishingAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Parkinson's disease patientsLocal binary pattern descriptorsExtreme learning machineClassification of Parkinson's disease patients based on spectrogram using local binary pattern descriptorsinfo:eu-repo/semantics/articleArtículo científicohttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_2df8fbb1Logemann J A, Fisher H B, Boshes B, Blonsky E R 1978 Frequency and cooccurrence of vocal tract dysfunctions in the speech of a large sample of Parkinson patients Journal of Speech and hearing Disorders 43(1) 47Arora S, Baghai-Ravary L, Tsanas A 2019 Developing a large scale population screening tool for the assessment of Parkinson's disease using telephone-quality voice The Journal of the Acoustical Society of America 145(5) 2871Sakar B E, Isenkul M E, Sakar C O, Sertbas A, Gurgen F, Delil S, Apaydin H, Kursun O 2013 Collection and analysis of a Parkinson speech dataset with multiple types of sound recordings IEEE Journal of Biomedical and Health Informatics 17(4) 828Wodzinski M, Skalski A, Hemmerling D, Orozco-Arroyave J R, N oth E 2019 Deep learning approach to Parkinson's disease detection using voice recordings and convolutional neural network dedicated to image classi cation 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Berlin: IEEE) p 717Orozco-Arroyave J R, Arias-Londo~no J D, Vargas-Bonilla J F, Gonzalez-Rativa M C, N oth E 2014 New Spanish speech corpus database for the analysis of people su ering from Parkinson's disease Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14) (Reykjavik: European Language Resources Association) p 342Zahid L, Maqsood M, Durrani M Y, Bakhtyar M, Baber J, Jamal H, Mehmood I, Song O Y 2020 A spectrogram-based deep feature assisted computer-aided diagnostic system for Parkinson's disease IEEE Access 8 35482Trinh N, Darragh O 2019 Pathological speech classi cation using a convolutional neural network Irish Machine Vision and Image Processing (IMVIP 2019) (Dublin: Technological University Dublin) p 72Huang G B, Zhu Q Y, Siew C K 2004 Extreme learning machine: a new learning scheme of feedforward neural networks International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541) (Budapest: IEEE) p 985Giuliano M, Perez S N, Maldonado M, Bondar P, Linari D, Adamec D A, Debas M I, Morales C M, Le on L, Yaco A Y, Birelli J B, Mart nez R M, Lacaze M L, Gurlekian J A 2021 Construction of a Parkinson's voice database International Conference on Industrial Engineering and Operations Management (Sao Paulo: IEOM Society International) p 940Greenberg S, Kingsbury B E 1997 The modulation spectrogram: in pursuit of an invariant representation of speech International Conference on Acoustics, Speech, and Signal Processing (Munich: IEEE) p 1647Kingsbury B E, Morgan N, Greenberg S 1998 Robust speech recognition using the modulation spectrogram Speech Communication 24 117Pietik ainen M 2005 Image analysis with local binary patterns Scandinavian Conference on Image Analysis (SCIA 2005) (Berlin: Springer) p 115Huang G B, Zhu Q Y, Siew C K 2006 Extreme learning machine: theory and applications Neurocomputing 70(1-3) 489Ding S, Zhao H, Zhang Y, Xu X, Nie R 2015 Extreme learning machine: algorithm, theory and applications Arti cial Intelligence Review 44(1) 103Barata J C A, Hussein M S 2012 The Moore-Penrose pseudoinverse: a tutorial review of the theory Brazilian Journal of Physics 42(1-2) 146Chamara L, Zhou H, Huang G B, Vong C M 2013 Representational learning with extreme learning machine for big data IEEE Intelligent Systems 28(6) 31Tang J, Deng C, Huang G B 2015 Extreme learning machine for multilayer perceptron IEEE Transactions on Neural Networks and Learning Systems 27(4) 809Beck A, Teboulle M 2009 A fast iterative shrinkage-thresholding algorithm for linear inverse problems SIAM Journal on Imaging Sciences 2(1) 183ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf510872https://bonga.unisimon.edu.co/bitstreams/6e0d5dd8-fbaa-4feb-8c7e-55c51bc596b4/download07f0838f6d8f27f68cd71fd59833bf55MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/4c757409-00ef-435a-b554-230995416efa/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/ddcc5bf6-3e17-4baa-a7e4-c52fce1b8ea0/download733bec43a0bf5ade4d97db708e29b185MD53TEXT08_2022_ART_Classification of Parkinson's.pdf.txt08_2022_ART_Classification of Parkinson's.pdf.txtExtracted texttext/plain25736https://bonga.unisimon.edu.co/bitstreams/2f060e7e-df56-41f2-a561-268dab5ee4f5/download86a95ca9a7fdf6fe54d7e97931052d1aMD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain25736https://bonga.unisimon.edu.co/bitstreams/04b21336-227d-45c6-b33c-d293e0cbdd6e/download86a95ca9a7fdf6fe54d7e97931052d1aMD56THUMBNAIL08_2022_ART_Classification of Parkinson's.pdf.jpg08_2022_ART_Classification of Parkinson's.pdf.jpgGenerated Thumbnailimage/jpeg4104https://bonga.unisimon.edu.co/bitstreams/e4c2bce1-18d3-4ca3-b777-e4ac11896574/download0c5af808171c9ae26a056a110db5bef0MD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg4104https://bonga.unisimon.edu.co/bitstreams/b21ee7f3-c754-42ed-820e-586b54133389/download0c5af808171c9ae26a056a110db5bef0MD5720.500.12442/13159oai:bonga.unisimon.edu.co:20.500.12442/131592024-08-14 21:53:48.392http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u