Evaluation of Multi-agent Architecture for Structural Damage Detection and Location
In this paper the results of using a Multi-agent system (MAS) for Structural Health Monitoring (SHM) are detailed. A study between different MAS architectures reported in literature is presented in order to select and adapt the most adequate one for SHM tasks. Requirements are established according...
- Autores:
-
Quintero-Parra, Andres F.
Camacho-Navarro, Jhonatan
Flórez, Marco
Vázquez-González, J.L.
- Tipo de recurso:
- Fecha de publicación:
- 2017
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- spa
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/1745
- Acceso en línea:
- http://hdl.handle.net/20.500.12442/1745
- Palabra clave:
- Artificial Intelligence
Intelligent Agent
Multiagent Architecture
Structural Health Monitoring
- Rights
- License
- Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id |
USIMONBOL2_599eb5bcf823a72cde6b09f6c0bd0477 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/1745 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Evaluation of Multi-agent Architecture for Structural Damage Detection and Location |
title |
Evaluation of Multi-agent Architecture for Structural Damage Detection and Location |
spellingShingle |
Evaluation of Multi-agent Architecture for Structural Damage Detection and Location Artificial Intelligence Intelligent Agent Multiagent Architecture Structural Health Monitoring |
title_short |
Evaluation of Multi-agent Architecture for Structural Damage Detection and Location |
title_full |
Evaluation of Multi-agent Architecture for Structural Damage Detection and Location |
title_fullStr |
Evaluation of Multi-agent Architecture for Structural Damage Detection and Location |
title_full_unstemmed |
Evaluation of Multi-agent Architecture for Structural Damage Detection and Location |
title_sort |
Evaluation of Multi-agent Architecture for Structural Damage Detection and Location |
dc.creator.fl_str_mv |
Quintero-Parra, Andres F. Camacho-Navarro, Jhonatan Flórez, Marco Vázquez-González, J.L. |
dc.contributor.author.none.fl_str_mv |
Quintero-Parra, Andres F. Camacho-Navarro, Jhonatan Flórez, Marco Vázquez-González, J.L. |
dc.subject.eng.fl_str_mv |
Artificial Intelligence Intelligent Agent Multiagent Architecture Structural Health Monitoring |
topic |
Artificial Intelligence Intelligent Agent Multiagent Architecture Structural Health Monitoring |
description |
In this paper the results of using a Multi-agent system (MAS) for Structural Health Monitoring (SHM) are detailed. A study between different MAS architectures reported in literature is presented in order to select and adapt the most adequate one for SHM tasks. Requirements are established according to recent solutions, where main parameters are type and number of sensors and communication protocols, among others. MAS technique uses several intelligent agents, that are algorithms able to act in a reactive or active way. Their action depends on surrounding environment or collected data. These agents can work in a decentralized way, searching the fulfillment of an individual goal or they can work with another system to achieve a common goal. Decision is based on their internal state (beliefs, goals and commitments). MAS’ effectiveness depends on the interconnection between the agents. Type of agents is defined according to its communication method and protocol, common and individual goals, among others. Decentralization and versatility are two important characteristics of MAS technique useful to solve SHM problem. This is one of the main motivations to consider this technique to be a good approach for the studied problem. A benchmark numerical model, which consists of a metallic framework, was used to validate and demonstrate the feasibility of the selected architecture for SHM. |
publishDate |
2017 |
dc.date.issued.none.fl_str_mv |
2017 |
dc.date.accessioned.none.fl_str_mv |
2018-03-01T22:42:15Z |
dc.date.available.none.fl_str_mv |
2018-03-01T22:42:15Z |
dc.type.spa.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
18612121 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12442/1745 |
identifier_str_mv |
18612121 |
url |
http://hdl.handle.net/20.500.12442/1745 |
dc.language.iso.eng.fl_str_mv |
spa |
language |
spa |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional |
rights_invalid_str_mv |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional http://purl.org/coar/access_right/c_abf2 |
dc.publisher.spa.fl_str_mv |
International Association of Online Engineering |
dc.source.eng.fl_str_mv |
International Journal of Online Engineering Vol. 13, No.06 (2017) |
institution |
Universidad Simón Bolívar |
dc.source.uri.none.fl_str_mv |
http://online-journals.org/index.php/i-joe/article/view/7184 |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/abc87598-7c4e-4b55-88b4-c6f629c176a7/download https://bonga.unisimon.edu.co/bitstreams/b20b919a-b022-49fc-9923-9801f4afa534/download https://bonga.unisimon.edu.co/bitstreams/d5d4af27-7422-4562-97b7-2a5ceb2eedd6/download https://bonga.unisimon.edu.co/bitstreams/d6464c9f-5ec5-42ac-b44c-0b0ad3e1ecc6/download https://bonga.unisimon.edu.co/bitstreams/93a73d77-116e-44c1-997f-41c4911b43d9/download https://bonga.unisimon.edu.co/bitstreams/2090acd4-8955-4cdd-823f-30f01f985c60/download |
bitstream.checksum.fl_str_mv |
6c2514cfd92537069c810c615ceaa732 8a4605be74aa9ea9d79846c1fba20a33 9e0e71342aa4e6bd697fc919191b105c 75f21f92184df8ee5def1c1a85f1fbf3 352e86be4b68425ac3be9351629f23fd df2721ae20feb2806f97d09bb221b8a2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076143852060672 |
spelling |
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Quintero-Parra, Andres F.5ae86b85-d852-48dc-bd60-42cb5dcd7070-1Camacho-Navarro, Jhonatana986b522-f0f2-4409-a9ba-5f866650e84d-1Flórez, Marco338304ad-c361-45b2-a1b1-ba014563caae-1Vázquez-González, J.L.8649ff77-c209-4a66-8774-d48fb0e9435b-12018-03-01T22:42:15Z2018-03-01T22:42:15Z201718612121http://hdl.handle.net/20.500.12442/1745In this paper the results of using a Multi-agent system (MAS) for Structural Health Monitoring (SHM) are detailed. A study between different MAS architectures reported in literature is presented in order to select and adapt the most adequate one for SHM tasks. Requirements are established according to recent solutions, where main parameters are type and number of sensors and communication protocols, among others. MAS technique uses several intelligent agents, that are algorithms able to act in a reactive or active way. Their action depends on surrounding environment or collected data. These agents can work in a decentralized way, searching the fulfillment of an individual goal or they can work with another system to achieve a common goal. Decision is based on their internal state (beliefs, goals and commitments). MAS’ effectiveness depends on the interconnection between the agents. Type of agents is defined according to its communication method and protocol, common and individual goals, among others. Decentralization and versatility are two important characteristics of MAS technique useful to solve SHM problem. This is one of the main motivations to consider this technique to be a good approach for the studied problem. A benchmark numerical model, which consists of a metallic framework, was used to validate and demonstrate the feasibility of the selected architecture for SHM.spaInternational Association of Online EngineeringInternational Journal of Online EngineeringVol. 13, No.06 (2017)http://online-journals.org/index.php/i-joe/article/view/7184Artificial IntelligenceIntelligent AgentMultiagent ArchitectureStructural Health MonitoringEvaluation of Multi-agent Architecture for Structural Damage Detection and Locationarticlehttp://purl.org/coar/resource_type/c_6501C.R. Farrar and S. Doebling, “A Review of Structural Health Monitoring Literature : 1996-2001,” Structural Health Monitoring, 2003, pp. 1996-2001.N.R. Jennings and W. College, “Applications of Intelligent Agents,” Intelligent agents, 1996.W. Jacak, K. Pro, and S. Dreiseitl, “Conflict Management in an Intelligent Multiagent Robotic System,” IEEE International Conference on Systems, Man, and Cybernetics, Nashville: 2000, pp. 1793-1798.H. Zhu, “A role-based architecture for intelligent agent systems,” Proceedings of the IEEE Workshop on Distributed Intelligent Systems: Collective Intelligence and Its Applications, 2006.S.Z.H. Zaidi, S.S.R. Abidi, M. S., and Y.-N. Cheah, “ADMI: A Multi-Agent Architecture to Autonomously Generate Data Mining Services,” International conference on intelligent systems, IEEE, 2004, pp. 273-279.P. Avitabile, “Experimental Modal Analysis ( A Simple Non-Mathematical Presentation ),” Modal Analysis, 2004, pp. 1-15.H. Voos, M.A. Lopez-Carmona, M.-M. Iván, and J.R. Velasco, Multiagent Systems, In-Teh, 2009.M. Scheutz and V. Andronache, The APOC Framework for the Comparison of Agent Architectures, Notre Dame: 2004.L. Kong and L. Xiao, “A Multi-Layered Control Architecture of Intelligent Agent,” IEEE International Conference on Control and Automation, Guangzhou: 2007, pp. 1454-1458.B. Horling, R. Mailler, and V. Lesser, “A Case Study of Organizational Effects in a Distributed Sensor Network,” IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004, pp. 51-57.W.R. Otte, J.S. Kinnebrew, D.C. Schmidt, and G. Biswas, “A flexible infrastructure for distributed deployment in adaptive sensor webs,” 2009 IEEE Aerospace conference, Mar. 2009, pp. 1-12.A. Kazandzhiev, I. Momtchev, L. Popova, and D. Shikalanov, “Distributed multi-agent based approaches,” International Conference on Integration of Knowledge Intensive Multi-Agent Systems, Waltham: Ieee, 2005, pp. 3-8.S. Ibarra, C. Quintero, J. De La Rosa, and J. R. Castan, “An Approach based on New Coordination Mechanisms to Improve the Teamwork of Cooperative Intelligent Agents,” 2006 Seventh Mexican International Conference on Computer Science, Sep. 2006, pp. 164-172.T. Fukuda, I. Takagawa, and Y. Hasegawa, “From intelligent robot to multi-agent robotic system self-organizing robotic systems,” International Conference on Integration of Knowledge Intensive Multi-Agent Systems, Boston: 2003, pp. 413-417.X. Zhao, S. Yuan, Z. Yu, W. Ye, and J. Cao, “Designing strategy for multi-agent system based large structural health monitoring,” Expert Systems with Applications, vol. 34, 2008, pp. 1154-1168.S.E. Lander, “Issues in multiagent design systems,” IEEE Expert, vol. 12, Mar. 1997, pp. 18-26.M. Wooldridge, N.R. Jennings, and D. Kinny, “The Gaia methodology for agent-oriented analysis and design,” Proceedings of the third annual conference on Autonomous Agents, 1999, pp. 69-76.H.S. Nwana, D.T. Ndumu, L.C. Lee, B.T. Laboratories, and M. Heath, ZEUS: An Advanced Tool-Kit for Engineering Distributed Multi-Agent Systems, Ipswich, Suffolk: 2006.X. Zhao, S. Yuan, Z. Yu, W. Ye, and J. Cao, “Designing strategy for multi-agent system based large structural health monitoring,” Expert Systems with Applications, vol. 34, 2008, pp. 1154-1168.S. Yuan, X. Lai, X. Zhao, X. Xu, and L. Zhang, “Distributed structural health monitoring system based on smart wireless sensor and multi-agent technology,” Smart Materials and Structures, vol. 15, 2006, pp. 1-8.A.F. Quintero-Parra and R. Villamizar-Mejía, “Estado del arte en monitorización de salud estructural: un enfoque basado en agentes inteligentes,” Ciencia e Ingeniería neogranadina, vol. 20, 2010, pp. 1-14.F. Klügl, “A validation methodology for agent-based simulations,” Proceedings of the 2008 ACM symposium on Applied computing, New York, New York, USA: ACM Press, 2008, p. 39.R. Fuentes, J.J. Gómez-sanz, and J. Pavón, “Verification and Validation Techniques for Multi- Agent Systems,” Upgrade, vol. 5, 2004, pp. 15-19.D.G. Fabio Bellifemine, Giovanni Caire, Developing Multi Agent Systems with JADE, John Wiley & Sons, 2007.J. Thangarajah and M. Winikoff, “Tool Support for Agent Development using the Prometheus Methodology,” Fifth International Conference on Quality Software, Ieee, 2005, pp. 383-388.Juan Martin Caicedo, “Structural Health Monitoring of Flexible Civil Structures,” Washington University, 2003.J. Wu, S. Yuan, S. Ji, G. Zhou, Y. Wang, and Z. Wang, “Multi-agent system design and evaluation for collaborative wireless sensor network in large structure health monitoring,” Expert Systems with Applications, vol. 37, Mar. 2010, pp. 2028-2036Hoschke, N., Lewis, C. J., Price, D. C., Scott, D. A., Edwards, G. C., Batten, A., “A Self-Organizing Sensing System For Structural Health Management” Knowledge-Based Intelligent Information And Engineering Systems, Proceedings, Lecture Notes In Artificial Intelligence, 2006, Páginas: 349-357Taylor, Stuart G., Farinholt, Kevin M., Flynn, Eric B., Figueiredo, Eloi, Mascarenas, David L., Moro, Erik A., Park, Gyuhae, Todd, Michael D., Farrar, Charles R., “A Mobile-Agent-Based Wireless Sensing Network For Structural Monitoring Applications” Measurement Science & Technology, Abril 2009.Zhou, Hengbao, Sun, Hongbing, Qiu, Lei, “An Evaluation on the Multi-Agent System Based Structural Health Monitoring For Large Scale Structures”, Expert Systems with Applications, 2008, Páginas: 4900-4914ORIGINALPDF.pdfPDF.pdfFormato Pdf texto completoapplication/pdf360645https://bonga.unisimon.edu.co/bitstreams/abc87598-7c4e-4b55-88b4-c6f629c176a7/download6c2514cfd92537069c810c615ceaa732MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://bonga.unisimon.edu.co/bitstreams/b20b919a-b022-49fc-9923-9801f4afa534/download8a4605be74aa9ea9d79846c1fba20a33MD52TEXTEvaEvaluation of Multi-agent Architecture for Structural Damage Detection and Location_Post-Print.pdf.txtEvaEvaluation of Multi-agent Architecture for Structural Damage Detection and Location_Post-Print.pdf.txtExtracted texttext/plain23303https://bonga.unisimon.edu.co/bitstreams/d5d4af27-7422-4562-97b7-2a5ceb2eedd6/download9e0e71342aa4e6bd697fc919191b105cMD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain23786https://bonga.unisimon.edu.co/bitstreams/d6464c9f-5ec5-42ac-b44c-0b0ad3e1ecc6/download75f21f92184df8ee5def1c1a85f1fbf3MD55THUMBNAILEvaEvaluation of Multi-agent Architecture for Structural Damage Detection and Location_Post-Print.pdf.jpgEvaEvaluation of Multi-agent Architecture for Structural Damage Detection and Location_Post-Print.pdf.jpgGenerated Thumbnailimage/jpeg1364https://bonga.unisimon.edu.co/bitstreams/93a73d77-116e-44c1-997f-41c4911b43d9/download352e86be4b68425ac3be9351629f23fdMD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg3538https://bonga.unisimon.edu.co/bitstreams/2090acd4-8955-4cdd-823f-30f01f985c60/downloaddf2721ae20feb2806f97d09bb221b8a2MD5620.500.12442/1745oai:bonga.unisimon.edu.co:20.500.12442/17452024-07-26 03:09:35.11open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |