Diphenyl Ditelluride: Redox-Modulating and Antiproliferative Properties
Tellurium is a rare element that has been regarded as a toxic, nonessential element, and its biological role is not clearly established. In addition, the biological effects of elemental tellurium and some of its organic and inorganic derivatives have been studied, leading to a set of interesting and...
- Autores:
-
Trindade, Cristiano
Mendes Juchem, André Luiz
Guecheva, Temenouga N.
Oliveira, Iuri M. de
dos Santos Silveira, Priscila
Vargas, José Eduardo
Puga, Renato
Pessoa, Claudia Ó.
Henriques, João A. P.
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Simón Bolívar
- Repositorio:
- Repositorio Digital USB
- Idioma:
- eng
- OAI Identifier:
- oai:bonga.unisimon.edu.co:20.500.12442/4383
- Acceso en línea:
- https://hdl.handle.net/20.500.12442/4383
- Palabra clave:
- Rights
- License
- Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id |
USIMONBOL2_548a7108f0e872e9805eddf3fce62dd8 |
---|---|
oai_identifier_str |
oai:bonga.unisimon.edu.co:20.500.12442/4383 |
network_acronym_str |
USIMONBOL2 |
network_name_str |
Repositorio Digital USB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Diphenyl Ditelluride: Redox-Modulating and Antiproliferative Properties |
title |
Diphenyl Ditelluride: Redox-Modulating and Antiproliferative Properties |
spellingShingle |
Diphenyl Ditelluride: Redox-Modulating and Antiproliferative Properties |
title_short |
Diphenyl Ditelluride: Redox-Modulating and Antiproliferative Properties |
title_full |
Diphenyl Ditelluride: Redox-Modulating and Antiproliferative Properties |
title_fullStr |
Diphenyl Ditelluride: Redox-Modulating and Antiproliferative Properties |
title_full_unstemmed |
Diphenyl Ditelluride: Redox-Modulating and Antiproliferative Properties |
title_sort |
Diphenyl Ditelluride: Redox-Modulating and Antiproliferative Properties |
dc.creator.fl_str_mv |
Trindade, Cristiano Mendes Juchem, André Luiz Guecheva, Temenouga N. Oliveira, Iuri M. de dos Santos Silveira, Priscila Vargas, José Eduardo Puga, Renato Pessoa, Claudia Ó. Henriques, João A. P. |
dc.contributor.author.none.fl_str_mv |
Trindade, Cristiano Mendes Juchem, André Luiz Guecheva, Temenouga N. Oliveira, Iuri M. de dos Santos Silveira, Priscila Vargas, José Eduardo Puga, Renato Pessoa, Claudia Ó. Henriques, João A. P. |
description |
Tellurium is a rare element that has been regarded as a toxic, nonessential element, and its biological role is not clearly established. In addition, the biological effects of elemental tellurium and some of its organic and inorganic derivatives have been studied, leading to a set of interesting and promising applications. Diphenyl ditelluride (DPDT), an organic tellurium derivate, showed antioxidant, antigenotoxic, antimutagenic, and anticancer properties. The antioxidant and prooxidant properties of DPDT are complex and depend on experimental conditions, which may explain the contradictory reports of these properties. In addition, DPDT may exert its effects through different pathways, including distinct ones to those responsible for chemotherapy resistance phenotypes: transcription factors, membrane receptors, adhesion, structural molecules, cell cycle regulatory components, and apoptosis pathways. This review aims to present recent advances in our understanding of the biological effects, therapeutic potential, and safety of DPDT treatment. Moreover, original results demonstrating the cytotoxic effects of DPDT in different mammalian cell lines and systems biology analysis are included, and emerging approaches for possible future applications are inferred. |
publishDate |
2019 |
dc.date.accessioned.none.fl_str_mv |
2019-11-26T21:59:10Z |
dc.date.available.none.fl_str_mv |
2019-11-26T21:59:10Z |
dc.date.issued.none.fl_str_mv |
2019 |
dc.type.eng.fl_str_mv |
article |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.identifier.issn.none.fl_str_mv |
19420900 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12442/4383 |
identifier_str_mv |
19420900 |
url |
https://hdl.handle.net/20.500.12442/4383 |
dc.language.iso.eng.fl_str_mv |
eng |
language |
eng |
dc.rights.*.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
dc.publisher.eng.fl_str_mv |
Hindawi |
dc.source.eng.fl_str_mv |
Oxidative Medicine and Cellular Longevity |
dc.source.spa.fl_str_mv |
Volume 2019 |
institution |
Universidad Simón Bolívar |
dc.source.uri.spa.fl_str_mv |
https://doi.org/10.1155/2019/2510936 |
bitstream.url.fl_str_mv |
https://bonga.unisimon.edu.co/bitstreams/f90c7b52-3e4e-4dc7-b8e8-7061a89ff257/download https://bonga.unisimon.edu.co/bitstreams/3d5cccac-5d51-45e9-ad23-4464ad9ef5c4/download https://bonga.unisimon.edu.co/bitstreams/afef733f-5606-43f8-a7f6-f29f32c34960/download https://bonga.unisimon.edu.co/bitstreams/9c079ec4-c1a8-4391-a2db-3f7befc189df/download https://bonga.unisimon.edu.co/bitstreams/e00fc21e-69fb-4e6b-b7bd-3ce566f05c26/download https://bonga.unisimon.edu.co/bitstreams/2475b5e3-8e48-4044-b50e-57339696975d/download https://bonga.unisimon.edu.co/bitstreams/ca63be44-1b65-4456-b8f4-2aebed620e63/download |
bitstream.checksum.fl_str_mv |
d340bc8d93de1066e860281cea619fb1 4460e5956bc1d1639be9ae6146a50347 733bec43a0bf5ade4d97db708e29b185 21044aa9303e30e5583b5e47827ead56 2db814293759aaa05f41c3e924973fb5 b12fab332216ab09be0cbf4666df647e 66e00f30b0b1c82ec73d549a2f2d01ea |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Digital Universidad Simón Bolívar |
repository.mail.fl_str_mv |
repositorio.digital@unisimon.edu.co |
_version_ |
1814076104853422080 |
spelling |
Trindade, Cristiano30b50065-9290-4b8a-837b-01634d3219d7Mendes Juchem, André Luiz8029481b-4296-4efc-8207-511092d279d8Guecheva, Temenouga N.e7e17ca9-1a89-44de-a472-2b528cff409dOliveira, Iuri M. de37b98348-1742-4f8f-93a4-ee998be560b3dos Santos Silveira, Priscila07a9136f-1f41-4346-bddc-fc856628c8edVargas, José Eduardo416f0def-6df6-4f2d-ad69-3c969af5664dPuga, Renato27951978-47c5-484c-a747-a0d418c2eb19Pessoa, Claudia Ó.798fe502-4198-40d6-92c4-8d141c1d0facHenriques, João A. P.1cfc7cec-c3fb-4bcb-ae53-26228c00decb2019-11-26T21:59:10Z2019-11-26T21:59:10Z201919420900https://hdl.handle.net/20.500.12442/4383Tellurium is a rare element that has been regarded as a toxic, nonessential element, and its biological role is not clearly established. In addition, the biological effects of elemental tellurium and some of its organic and inorganic derivatives have been studied, leading to a set of interesting and promising applications. Diphenyl ditelluride (DPDT), an organic tellurium derivate, showed antioxidant, antigenotoxic, antimutagenic, and anticancer properties. The antioxidant and prooxidant properties of DPDT are complex and depend on experimental conditions, which may explain the contradictory reports of these properties. In addition, DPDT may exert its effects through different pathways, including distinct ones to those responsible for chemotherapy resistance phenotypes: transcription factors, membrane receptors, adhesion, structural molecules, cell cycle regulatory components, and apoptosis pathways. This review aims to present recent advances in our understanding of the biological effects, therapeutic potential, and safety of DPDT treatment. Moreover, original results demonstrating the cytotoxic effects of DPDT in different mammalian cell lines and systems biology analysis are included, and emerging approaches for possible future applications are inferred.engHindawiAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Oxidative Medicine and Cellular LongevityVolume 2019https://doi.org/10.1155/2019/2510936Diphenyl Ditelluride: Redox-Modulating and Antiproliferative Propertiesarticlehttp://purl.org/coar/resource_type/c_6501T. G. Chasteen, D. E. Fuentes, J. C. Tantaleán, and C. C. Vásquez, “Tellurite: history, oxidative stress, and molecular mechanisms of resistance,” FEMS Microbiology Reviews, vol. 33, no. 4, pp. 820–832, 2009.Y. Ogra, “Biology and toxicology of tellurium explored by speciation analysis,” Metallomics, vol. 9, no. 5, pp. 435–441, 2017.A. J. Larner, “How does garlic exert its hypocholesterolaemic action? The tellurium hypothesis,” Medical Hypotheses, vol. 44, no. 4, pp. 295–297, 1995.G. P. Bienert, M. D. Schussler, and T. P. Jahn, “Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out,” Trends in Biochemical Sciences, vol. 33, no. 1, pp. 20–26, 2008.N. Petragnani and H. A. Stefani, “Advances in organic tellurium chemistry,” ChemInform, vol. 36, no. 22, 2005.J. V. Comasseto and A. A. Dos Santos, “Organotellurides as precursors of reactive organometallics,” Phosphorus, Sulfur, and Silicon and the Related Elements, vol. 183, no. 4, pp. 939–947, 2008.R. Hardman, “A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors,” Environmental Health Perspectives, vol. 114, no. 2, pp. 165–172, 2006.J. L. Princival, A. A. D. Santos, and J. V. Comasseto, “Reactive organometallics from organotellurides: application in organic synthesis,” Journal of the Brazilian Chemical Society, vol. 21, no. 11, pp. 2042–2054, 2010.R. S. Ferrarini, A. A. Dos Santos, and J. V. Comasseto, “Tellurium in organic synthesis: a general approach to buteno- and butanolides,” Tetrahedron, vol. 68, no. 51, pp. 10601–10610, 2012.M. Kominkova, V. Milosavljevic, P. Vitek et al., “Comparative study on toxicity of extracellularly biosynthesized and laboratory synthesized CdTe quantum dots,” Journal of Biotechnology, vol. 241, pp. 193–200, 2017.E. Dopp, L. M. Hartmann, A. M. Florea, A. W. Rettenmeier, and A. V. Hirner, “Environmental distribution, analysis, and toxicity of organometal(loid) compounds,” Critical Reviews in Toxicology, vol. 34, no. 3, pp. 301–333, 2004.S. J. Klaine, P. J. J. Alvarez, G. E. Batley et al., “Nanomaterials in the environment: behavior, fate, bioavailability, and effects,” Environmental Toxicology and Chemistry, vol. 27, no. 9, pp. 1825–1851, 2008.J. Lovrić, S. J. Cho, F. M. Winnik, and D. Maysinger, “Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death,” Cell Chemistry Biology, vol. 12, no. 11, pp. 1227– 1234, 2005.Y. Ogra, “Toxicometallomics for research on the toxicology of exotic metalloids based on speciation studies,” Analytical Sciences, vol. 25, no. 10, pp. 1189–1195, 2009.P. Babula, V. Adam, R. Opatrilova, J. Zehnalek, L. Havel, and R. Kizek, “Uncommon heavy metals, metalloids and their plant toxicity: a review,” Environmental Chemistry Letters, vol. 6, no. 4, pp. 189–213, 2008.F. Gagné, J. Auclair, P. Turcotte et al., “Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts on immune system, oxidative stress and genotoxicity,” Aquatic Toxicology, vol. 86, no. 3, pp. 333–340, 2008.A. Taylor, “Biochemistry of tellurium,” Biological Trace Element Research, vol. 55, no. 3, pp. 231–239, 1996.M. Friedman, I. Bayer, I. Letko et al., “Topical treatment for human papillomavirus-associated genital warts in humans with the novel tellurium immunomodulator AS101: assessment of its safety and efficacy,” The British Journal of Dermatology, vol. 160, no. 2, pp. 403–408, 2009.C. W. Nogueira, G. Zeni, and J. B. Rocha, “Organoselenium and organotellurium compounds: toxicology and pharmacology,” Chemical Reviews, vol. 104, no. 12, pp. 6255–6286, 2004.B. L. Sailer, N. Liles, S. Dickerson, and T. G. Chasteen, “Cytometric determination of novel organotellurium compound toxicity in a promyelocytic (HL-60) cell line,” Archives of Toxicology, vol. 77, no. 1, pp. 30–36, 2003.C. Trindade, A. L. M. Juchem, N. R. M. de Albuquerque et al., “Antigenotoxic and antimutagenic effects of diphenyl ditelluride against several known mutagens in Chinese hamster lung fibroblasts,” Mutagenesis, vol. 30, no. 6, pp. 799–809, 2015.T. H. Degrandi, I. M. de Oliveira, G. S. d'Almeida et al., “Evaluation of the cytotoxicity, genotoxicity and mutagenicity of diphenyl ditelluride in several biological models,” Mutagenesis, vol. 25, no. 3, pp. 257–269, 2010.P. M. Jorge, I. M. de Oliveira, E. C. Filippi Chiela et al., “Diphenyl ditelluride-induced cell cycle arrest and apoptosis: a relation with topoisomerase I inhibition,” Basic & Clinical Pharmacology & Toxicology, vol. 116, no. 3, pp. 273–280, 2015.J. I. Rossato, L. A. Ketzer, F. B. Centurião et al., “Antioxidant properties of new chalcogenides against lipid peroxidation in rat brain,” Neurochemical Research, vol. 27, no. 4, pp. 297– 303, 2002.K. Briviba, R. Tamler, L. O. Klotz, L. Engman, I. A. Cotgreave, and H. Sies, “Protection by organotellurium compounds against peroxynitrite-mediated oxidation and nitration reactions,” Biochemical Pharmacology, vol. 55, no. 6, pp. 817–823, 1998.D. S. Avila, A. Benedetto, C. Au et al., “Organotellurium and organoselenium compounds attenuate Mn-induced toxicity in Caenorhabditis elegans by preventing oxidative stress,” Free Radical Biology & Medicine, vol. 52, no. 9, pp. 1903–1910, 2012.M. H. Raza, S. Siraj, A. Arshad et al., “ROS-modulated therapeutic approaches in cancer treatment,” Journal of Cancer Research and Clinical Oncology, vol. 143, no. 9, pp. 1789–1809, 2017.D. S. Ávila, P. Gubert, A. Palma et al., “An organotellurium compound with antioxidant activity against excitotoxic agents without neurotoxic effects in brain of rats,” Brain Research Bulletin, vol. 76, no. 1-2, pp. 114–123, 2008.L. A. Ba, M. Döring, V. Jamier, and C. Jacob, “Tellurium: an element with great biological potency and potential,” Organic & Biomolecular Chemistry, vol. 8, no. 19, pp. 4203–4216, 2010.L. Engman, N. al-Maharik, M. McNaughton, A. Birmingham, and G. Powis, “Thioredoxin reductase and cancer cell growth inhibition by organotellurium compounds that could be selectively incorporated into tumor cells,” Bioorganic & Medicinal Chemistry, vol. 11, no. 23, pp. 5091–5100, 2003.B. K. Sarma and G. Mugesh, “Antioxidant activity of the antiinflammatory compound ebselen: a reversible cyclization pathway via selenenic and seleninic acid intermediates,” Chemistry - A European Journal, vol. 14, no. 34, pp. 10603– 10614, 2008.A. S. de Freitas, A. D. S. Prestes, C. Wagner et al., “Reduction of diphenyl diselenide and analogs by mammalian thioredoxin reductase is independent of their gluthathione peroxidaselike activity: a possible novel pathway for their antioxidant activity,” Molecules, vol. 15, no. 11, pp. 7699–7714, 2010.B. Sredni, “Immunomodulating tellurium compounds as anticancer agents,” Seminars in Cancer Biology, vol. 22, no. 1, pp. 60–69, 2012.M. Ibrahim, W. Hassan, J. Anwar, C. W. Nogueira, and J. B. Teixeira Rocha, “Fe(II) and sodium nitroprusside induce oxidative stress: a comparative study of diphenyl diselenide and diphenyl ditelluride with their napthyl analog,” Drug and Chemical Toxicology, vol. 35, no. 1, pp. 48–56, 2012.V. B. Brito, J. B. Rocha, V. Folmer, and F. Erthal, “Diphenyl diselenide and diphenyl ditelluride increase the latency for 4-aminopyridine-induced chemical seizure and prevent death in mice,” Acta Biochimica Polonica, vol. 56, no. 1, pp. 125–134, 2009.V. C. Borges, J. B. Rocha, and C. W. Nogueira, “Effect of diphenyl diselenide, diphenyl ditelluride and ebselen on cerebral Na+, K+-ATPase activity in rats,” Toxicology, vol. 215, no. 3, pp. 191–197, 2005.R. M. Damiani, D. J. Moura, C. M. Viau, R. A. Caceres, J. A. P. Henriques, and J. Saffi, “Pathways of cardiac toxicity: comparison between chemotherapeutic drugs doxorubicin and mitoxantrone,” Archives of Toxicology, vol. 90, no. 9, pp. 2063–2076, 2016.B. Comparsi, D. F. Meinerz, J. L. Franco et al., “Diphenyl ditelluride targets brain selenoproteins in vivo: inhibition of cerebral thioredoxin reductase and glutathione peroxidase in mice after acute exposure,” Molecular and Cellular Biochemistry, vol. 370, no. 1-2, pp. 173–182, 2012.M. P. Rigobello, A. Folda, A. Citta et al., “Interaction of selenite and tellurite with thiol-dependent redox enzymes: kinetics and mitochondrial implications,” Free Radical Biology & Medicine, vol. 50, no. 11, pp. 1620–1629, 2011.M. Prigol, C. W. Nogueira, G. Zeni, M. R. Bronze, and L. Constantino, “In vitro metabolism of diphenyl diselenide in rat liver fractions. Conjugation with GSH and binding to thiol groups,” Chemico-Biological Interactions, vol. 200, no. 2-3, pp. 65–72, 2012.R. M. Rosa, D. J. Moura, A. C. Romano e Silva, J. Saffi, and J. A. Pêgas Henriques, “Antioxidant activity of diphenyl diselenide prevents the genotoxicity of several mutagens in Chinese hamster V79 cells,” Mutation Research, vol. 631, no. 1, pp. 44–54, 2007.M. Gordaliza, “Natural products as leads to anticancer drugs,” Clinical & Translational Oncology, vol. 9, no. 12, pp. 767–776, 2007.K. Słoczyńska, B. Powroźnik, E. Pękala, and A. M. Waszkielewicz, “Antimutagenic compounds and their possible mechanisms of action,” Journal of Applied Genetics, vol. 55, no. 2, pp. 273–285, 2014.G. Halpert and B. Sredni, “The effect of the novel tellurium compound AS101 on autoimmune diseases,” Autoimmunity Reviews, vol. 13, no. 12, pp. 1230–1235, 2014.B. S. Sekhon, “Metalloid compounds as drugs,” Research in Pharmaceutical Sciences, vol. 8, no. 3, pp. 145–158, 2013.M. Goodman, R. M. Bostick, O. Kucuk, and D. P. Jones, “Clinical trials of antioxidants as cancer prevention agents: past, present, and future,” Free Radical Biology & Medicine, vol. 51, no. 5, pp. 1068–1084, 2011.S. Redondo-Blanco, J. Fernández, I. Gutiérrez-del-Río, C. J. Villar, and F. Lombó, “New insights toward colorectal cancer chemotherapy using natural bioactive compounds,” Frontiers in Pharmacology, vol. 8, p. 109, 2017.J. Zhang, X. Li, X. Han, R. Liu, and J. Fang, “Targeting the thioredoxin system for cancer therapy,” Trends in Pharmacological Sciences, vol. 38, no. 9, pp. 794–808, 2017.H. Zhang, D. Cao, W. Cui, M. Ji, X. Qian, and L. Zhong, “Molecular bases of thioredoxin and thioredoxin reductasemediated prooxidant actions of (-)-epigallocatechin-3-gallate,” Free Radical Biology & Medicine, vol. 49, no. 12, pp. 2010– 2018, 2010.F. Saccoccia, F. Angelucci, G. Boumis et al., “Thioredoxin reductase and its inhibitors,” Current Protein & Peptide Science, vol. 15, no. 6, pp. 621–646, 2014.R. L. O. R. Cunha, I. E. Gouvea, and L. Juliano, “A glimpse on biological activities of tellurium compounds,” Anais da Academia Brasileira de Ciências, vol. 81, no. 3, pp. 393–407, 2009.S. Urig and K. Becker, “On the potential of thioredoxin reductase inhibitors for cancer therapy,” Seminars in Cancer Biology, vol. 16, no. 6, pp. 452–465, 2006.P. Vij and D. Hardej, “Evaluation of tellurium toxicity in transformed and non-transformed human colon cells,” Environmental Toxicology and Pharmacology, vol. 34, no. 3, pp. 768–782, 2012.M. A. Dickson and G. K. Schwartz, “Development of cell-cycle inhibitors for cancer therapy,” Current Oncology, vol. 16, no. 2, pp. 36–43, 2009.R. Visconti, R. Della Monica, and D. Grieco, “Cell cycle checkpoint in cancer: a therapeutically targetable double-edged sword,” Journal of Experimental & Clinical Cancer Research, vol. 35, no. 1, p. 153, 2016.S. Roy and D. Hardej, “Tellurium tetrachloride and diphenyl ditelluride cause cytotoxicity in rat hippocampal astrocytes,” Food and Chemical Toxicology, vol. 49, no. 10, pp. 2564– 2574, 2011.R. L. Puntel, D. H. Roos, R. L. Seeger, and J. B. T. Rocha, “Mitochondrial electron transfer chain complexes inhibition by different organochalcogens,” Toxicology In Vitro, vol. 27, no. 1, pp. 59–70, 2013.R. D. Snyder and M. R. Arnone, “Putative identification of functional interactions between DNA intercalating agents and topoisomerase II using the V79 in vitro micronucleus assay,” Mutation Research, vol. 503, no. 1-2, pp. 21–35, 2002.M. S. A. Elsayed, Y. Su, P. Wang et al., “Design and synthesis of chlorinated and fluorinated 7-azaindenoisoquinolines as potent cytotoxic anticancer agents that inhibit topoisomerase I,” Journal of Medicinal Chemistry, vol. 60, no. 13, pp. 5364– 5376, 2017.L. Marzi, K. Agama, J. Murai et al., “Novel fluoroindenoisoquinoline non-camptothecin topoisomerase I inhibitors,” Molecular Cancer Therapeutics, vol. 17, no. 8, pp. 1694–1704, 2018.Y. Pommier, “Topoisomerase I inhibitors: camptothecins and beyond,” Nature Reviews. Cancer, vol. 6, no. 10, pp. 789–802, 2006.Y. Pommier and M. Cushman, “The indenoisoquinoline noncamptothecin topoisomerase I inhibitors: update and perspectives,” Molecular Cancer Therapeutics, vol. 8, no. 5, pp. 1008–1014, 2009.N. Wu, X. W. Wu, K. Agama et al., “A novel DNA topoisomerase I inhibitor with different mechanism from camptothecin induces G2/M phase cell cycle arrest to K562 cells,” Biochemistry, vol. 49, no. 47, pp. 10131–10136, 2010.Y. Naor, M. Hayun, B. Sredni, and J. Don, “Multiple signal transduction pathways are involved in G2/M growth arrest and apoptosis induced by the immunomodulator AS101 in multiple myeloma,” Leukemia & Lymphoma, vol. 54, no. 1, pp. 160–166, 2013.A. A. Troussard, N. M. Mawji, C. Ong, A. Mui, R. St-Arnaud, and S. Dedhar, “Conditional knock-out of integrin-linked kinase demonstrates an essential role in protein kinase B/Akt activation,” Journal of Biological Chemistry, vol. 278, no. 25, pp. 22374–22378, 2003.G. Halpert, T. Eitan, E. Voronov et al., “Multifunctional activity of a small tellurium redox immunomodulator compound, AS101, on dextran sodium sulfate-induced murine colitis,” Journal of Biological Chemistry, vol. 289, no. 24, pp. 17215– 17227, 2014.Y. Pommier, Y. Sun, S. Y. N. Huang, and J. L. Nitiss, “Roles of eukaryotic topoisomerases in transcription, replication and genomic stability,” Nature Reviews Molecular Cell Biology, vol. 17, no. 11, pp. 703–721, 2016.Y. C. Tse-Dinh, “Targeting bacterial topoisomerases: how to counter mechanisms of resistance,” Future Medicinal Chemistry, vol. 8, no. 10, pp. 1085–1100, 2016.Y. Pommier, “Drugging topoisomerases: lessons and challenges,” ACS Chemical Biology, vol. 8, no. 1, pp. 82–95, 2013.S. M. Cuya, M. A. Bjornsti, and R. van Waardenburg, “DNA topoisomerase-targeting chemotherapeutics: what’s new?,” Cancer Chemotherapy and Pharmacology, vol. 80, no. 1, pp. 1– 14, 2017.G. Smyth, “Limma: linear models for microarray data,” in Bioinformatics and Computational Biology Solutions Using R and Bioconductor, R. Gentleman, V. J. Carey, W. Huber, R. A. Irizarry, and S. Dudoit, Eds., pp. 397–420, Springer, New York, NY, USA, 2005.D. Warde-Farley, S. L. Donaldson, O. Comes et al., “The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function,” Nucleic Acids Research, vol. 38, pp. W214–W220, 2010.M. Kuhn, C. von Mering, M. Campillos, L. J. Jensen, and P. Bork, “STITCH: interaction networks of chemicals and proteins,” Nucleic Acids Research, vol. 36, pp. D684–D688, 2008.X. Xie, X. M. Xu, N. Li et al., “DMH1 increases glucose metabolism through activating Akt in L6 rat skeletal muscle cells,” PLoS One, vol. 9, no. 9, article e107776, 2014.J. Phuchareon, F. McCormick, D. W. Eisele, and O. Tetsu, “EGFR inhibition evokes innate drug resistance in lung cancer cells by preventing Akt activity and thus inactivating Ets-1 function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 112, no. 29, pp. E3855– E3863, 2015.R. Li, J. Wei, C. Jiang et al., “Akt SUMOylation regulates cell proliferation and tumorigenesis,” Cancer Research, vol. 73, no. 18, pp. 5742–5753, 2013.P. P. Ruvolo, “Role of protein phosphatases in the cancer microenvironment,” Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol. 1866, no. 1, pp. 144–152, 2019.G. Scardoni, G. Tosadori, M. Faizan, F. Spoto, F. Fabbri, and C. Laudanna, “Biological network analysis with CentiScaPe: centralities and experimental dataset integration,” F1000Research, vol. 3, p. 139, 2014.L. Heimfarth, F. da Silva Ferreira, P. Pierozan et al., “Astrocyte- neuron interaction in diphenyl ditelluride toxicity directed to the cytoskeleton,” Toxicology, vol. 379, pp. 1–11, 2017.R. M. Damiani, D. J. Moura, C. M. Viau et al., “Influence of PARP-1 inhibition in the cardiotoxicity of the topoisomerase 2 inhibitors doxorubicin and mitoxantrone,” Toxicology In Vitro, vol. 52, pp. 203–213, 2018.A. P. Fernandes and V. Gandin, “Selenium compounds as therapeutic agents in cancer,” Biochimica et Biophysica Acta (BBA) - General Subjects, vol. 1850, no. 8, pp. 1642–1660, 2015.A. T. Dharmaraja, “Role of reactive oxygen species (ROS) in therapeutics and drug resistance in cancer and bacteria,” Journal of Medicinal Chemistry, vol. 60, no. 8, pp. 3221–3240, 2017.H. R. Molavian, A. Goldman, C. J. Phipps et al., “Drug-induced reactive oxygen species (ROS) rely on cell membrane properties to exert anticancer effects,” Scientific Reports, vol. 6, no. 1, p. 27439, 2016.S. Maere, K. Heymans, and M. Kuiper, “BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks,” Bioinformatics, vol. 21, no. 16, pp. 3448-3449, 2005.T. Nepusz, H. Yu, and A. Paccanaro, “Detecting overlapping protein complexes in protein-protein interaction networks,” Nature Methods, vol. 9, no. 5, pp. 471-472, 2012.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf2543853https://bonga.unisimon.edu.co/bitstreams/f90c7b52-3e4e-4dc7-b8e8-7061a89ff257/downloadd340bc8d93de1066e860281cea619fb1MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/3d5cccac-5d51-45e9-ad23-4464ad9ef5c4/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/afef733f-5606-43f8-a7f6-f29f32c34960/download733bec43a0bf5ade4d97db708e29b185MD53TEXTDiphenyl_Ditelluride_Redox-Modulating.pdf.txtDiphenyl_Ditelluride_Redox-Modulating.pdf.txtExtracted texttext/plain68016https://bonga.unisimon.edu.co/bitstreams/9c079ec4-c1a8-4391-a2db-3f7befc189df/download21044aa9303e30e5583b5e47827ead56MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain69726https://bonga.unisimon.edu.co/bitstreams/e00fc21e-69fb-4e6b-b7bd-3ce566f05c26/download2db814293759aaa05f41c3e924973fb5MD56THUMBNAILDiphenyl_Ditelluride_Redox-Modulating.pdf.jpgDiphenyl_Ditelluride_Redox-Modulating.pdf.jpgGenerated Thumbnailimage/jpeg1637https://bonga.unisimon.edu.co/bitstreams/2475b5e3-8e48-4044-b50e-57339696975d/downloadb12fab332216ab09be0cbf4666df647eMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5560https://bonga.unisimon.edu.co/bitstreams/ca63be44-1b65-4456-b8f4-2aebed620e63/download66e00f30b0b1c82ec73d549a2f2d01eaMD5720.500.12442/4383oai:bonga.unisimon.edu.co:20.500.12442/43832024-08-14 21:52:21.08http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u |