Sigma Routing Metric for RPL Protocol

This paper presents the adaptation of a specific metric for the RPL protocol in the objective function MRHOF. Among the functions standardized by IETF, we find OF0, which is based on the minimum hop count, as well as MRHOF, which is based on the Expected Transmission Count (ETX). However, when the n...

Full description

Autores:
Sanmartin, Paul
Rojas, Aldo
Fernandez, Luis
Avila, Karen
Jabba, Daladier
Valle, Sebastian
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/2108
Acceso en línea:
http://hdl.handle.net/20.500.12442/2108
Palabra clave:
LLN
RPL
Objective function
Routing metric
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_521a08b4bd421107d7e042012a92b7ba
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/2108
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Sigma Routing Metric for RPL Protocol
title Sigma Routing Metric for RPL Protocol
spellingShingle Sigma Routing Metric for RPL Protocol
LLN
RPL
Objective function
Routing metric
title_short Sigma Routing Metric for RPL Protocol
title_full Sigma Routing Metric for RPL Protocol
title_fullStr Sigma Routing Metric for RPL Protocol
title_full_unstemmed Sigma Routing Metric for RPL Protocol
title_sort Sigma Routing Metric for RPL Protocol
dc.creator.fl_str_mv Sanmartin, Paul
Rojas, Aldo
Fernandez, Luis
Avila, Karen
Jabba, Daladier
Valle, Sebastian
dc.contributor.author.none.fl_str_mv Sanmartin, Paul
Rojas, Aldo
Fernandez, Luis
Avila, Karen
Jabba, Daladier
Valle, Sebastian
dc.subject.eng.fl_str_mv LLN
RPL
Objective function
Routing metric
topic LLN
RPL
Objective function
Routing metric
description This paper presents the adaptation of a specific metric for the RPL protocol in the objective function MRHOF. Among the functions standardized by IETF, we find OF0, which is based on the minimum hop count, as well as MRHOF, which is based on the Expected Transmission Count (ETX). However, when the network becomes denser or the number of nodes increases, both OF0 and MRHOF introduce long hops, which can generate a bottleneck that restricts the network. The adaptation is proposed to optimize both OFs through a new routing metric. To solve the above problem, the metrics of the minimum number of hops and the ETX are combined by designing a new routing metric called SIGMA-ETX, in which the best route is calculated using the standard deviation of ETX values between each node, as opposed to working with the ETX average along the route. This method ensures a better routing performance in dense sensor networks. The simulations are done through the Cooja simulator, based on the Contiki operating system. The simulations showed that the proposed optimization outperforms at a high margin in both OF0 and MRHOF, in terms of network latency, packet delivery ratio, lifetime, and power consumption.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-05-23T19:35:31Z
dc.date.available.none.fl_str_mv 2018-05-23T19:35:31Z
dc.date.issued.none.fl_str_mv 2018-04
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 14248220
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/2108
identifier_str_mv 14248220
url http://hdl.handle.net/20.500.12442/2108
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv MDPI.
dc.source.eng.fl_str_mv Sensors
dc.source.spa.fl_str_mv Vol. 18, No.4 (2018)
institution Universidad Simón Bolívar
dc.source.uri.spa.fl_str_mv https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948651/
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/166b5b96-43aa-4478-91d1-829dd5ecd9b7/download
https://bonga.unisimon.edu.co/bitstreams/3fcdf0f2-a97a-408d-87c8-57c76da2e291/download
https://bonga.unisimon.edu.co/bitstreams/42c6650d-d54c-4ad5-bea6-154c6ac66193/download
https://bonga.unisimon.edu.co/bitstreams/ee6ec974-583e-4c5a-b24c-21691fe85cf7/download
https://bonga.unisimon.edu.co/bitstreams/56003618-f004-41fb-b1e6-7dda39f72743/download
https://bonga.unisimon.edu.co/bitstreams/61fbc834-4253-486d-b3e3-3ceaf142f539/download
bitstream.checksum.fl_str_mv 26ca891bb32eb82abc29046f5290a259
3fdc7b41651299350522650338f5754d
1932426e1d2ab1cd7ac21d21282f1ec1
069d6d50a489adb5fa8c76e8acdc4301
675d7cdc8a1c2064e3265390a1a0d9a5
3d805b1d8f5e879696a005058a7c308a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100531709018112
spelling Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Sanmartin, Paul637b2108-8720-4718-8d08-92bb119cc9e4-1Rojas, Aldoafca9230-9b36-46d0-9855-35ff5b0ae425-1Fernandez, Luisea76802d-6eaf-4e86-b6f2-25bf5081887a-1Avila, Karen65cd10ac-1d49-4844-b959-df97ab73c242-1Jabba, Daladier19d0263d-ac39-4417-b735-1297cec1f8e6-1Valle, Sebastian0881a978-bf0a-4ff3-ad92-dbbb3f90e990-12018-05-23T19:35:31Z2018-05-23T19:35:31Z2018-0414248220http://hdl.handle.net/20.500.12442/2108This paper presents the adaptation of a specific metric for the RPL protocol in the objective function MRHOF. Among the functions standardized by IETF, we find OF0, which is based on the minimum hop count, as well as MRHOF, which is based on the Expected Transmission Count (ETX). However, when the network becomes denser or the number of nodes increases, both OF0 and MRHOF introduce long hops, which can generate a bottleneck that restricts the network. The adaptation is proposed to optimize both OFs through a new routing metric. To solve the above problem, the metrics of the minimum number of hops and the ETX are combined by designing a new routing metric called SIGMA-ETX, in which the best route is calculated using the standard deviation of ETX values between each node, as opposed to working with the ETX average along the route. This method ensures a better routing performance in dense sensor networks. The simulations are done through the Cooja simulator, based on the Contiki operating system. The simulations showed that the proposed optimization outperforms at a high margin in both OF0 and MRHOF, in terms of network latency, packet delivery ratio, lifetime, and power consumption.engMDPI.SensorsVol. 18, No.4 (2018)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5948651/LLNRPLObjective functionRouting metricSigma Routing Metric for RPL Protocolarticlehttp://purl.org/coar/resource_type/c_6501Kim, T.-H.; Ramos, C.; Mohammed, S. Smart City and IoT; Elsevier: New York, NY, USA, 2017.Ang, L.-M.; Seng, K.P.; Zungeru, A.M.; Ijemaru, G.K. Big sensor data systems for smart cities. IEEE Internet Things J. 2017, 4, 1259–1271. [CrossRef]Abdelgadir, M.; Saeed, R.A.; Babiker, A. Mobility routing model for vehicular Ad-Hoc networks (VANETS), smart city scenarios. Veh. Commun. 2017, 9, 154–161. [CrossRef]Peixoto, J.P.J.; Costa, D.G.Wireless visual sensor networks for smart city applications: A relevance-based approach for multiple sinks mobility. Future Gener. Comput. Syst. 2017, 76, 51–62. [CrossRef]Boukerche, A.; Turgut, B.; Aydin, N.; Ahmad, M.Z.; Bölöni, L.; Turgut, D. Routing protocols in Ad Hoc networks: A survey. Comput. Netw. 2011, 55, 3032–3080. [CrossRef]Ana De Pablo, E. Development of aWireless Sensor Network with 6LoWPAN Support. Available online: https://upcommons.upc.edu/bitstream/handle2099.1/7806/memoria.pdf?sequense=1&isAlloweb=y (accessed on 13 October 2017).Ergen, S.C. ZigBee/IEEE 802.15. 4 Summary; UC Berkeley: Berkeley, CA, USA, 2004; Volume 10, p. 17.Al-Turjman, F. Cognitive routing protocol for disaster-inspired internet of things. Future Gener. Comput. Syst. 2017. [CrossRef]Chejerla, B.K.; Madria, S.K. QoS guaranteeing robust scheduling in attack resilient cloud integrated cyber physical system. Future Gener. Comput. Syst. 2017, 75, 145–157. [CrossRef]Vasseur, J.-P.; Kim, M.; Pister, K.; Dejean, N.; Barthel, D. Routing Metrics Used for Path Calculation in Low-Power and Lossy Networks; 2070-1721; IETF: Fremont, CA, USA, 2012.Thubert, P. Objective Function Zero for the Routing Protocol for Low-Power and Lossy Networks (RPL). Available online: https://tools.ietf.org/html/rfc6552 (accessed on 15 September 2017).Karkazis, P.; Leligou, H.-C.; Sarakis, L.; Zahariadis, T.; Trakadas, P.; Velivassaki, T.H.; Capsalis, C. Design of primary and composite routing metrics for RPL-compliant wireless sensor networks. In Proceedings of the 2012 International Conference on Telecommunications and Multimedia (TEMU), Chania, Greece, 30 July–1 August 2012; pp. 13–18.Park, J.; Kim, K.-H.; Kim, K. An algorithm for timely transmission of solicitation messages in RPL for energy-efficient node mobility. Sensors 2017, 17, 899. [CrossRef] [PubMed]Gnawali, O. The Minimum Rank with Hysteresis Objective Function. Available online: https://tools.ietf. org/html/rfc6719 (accessed on 11 September 2017).Zhao, M.; Nawaz, A.; Rongxing, L. An energy-efficient and self-regioning-based-based RPL for low-power and lossy networks. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21 September 2016.Kim, S.; Kawahara, Y.; Georgiadis, A.; Collado, A.; Tentzeris, M.M. Low-cost inkjet-printed fully passive rfid tags for calibration-free capacitive/haptic sensor applications. IEEE Sens. J. 2015, 15, 3135–3145. [CrossRef]Xiao,W.; Liu, J.; Jiang, N.; Shi, H. An optimization of the object function for routing protocol of low-power and lossy networks. In Proceedings of the 2014 2nd International Conference on Systems and Informatics (ICSAI), Shanghai, China, 15–17 November 2014; pp. 515–519.Sanmartin, P.; Cardona, J.; Jabba, D. QoS in heterogeneous networks based on based on dwdm technology. In Proceedings of the 2015 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Santiago, Chile, 28–30 October 2015; pp. 339–344.Trakadas, P.; Zahariadis, T. Design Guidelines for Routing Metrics Composition in LLN. Available online: https://tools.ietf.org/html/draft-zahariadis-roll-metrics-composition-03 (accessed on 15 September 2017).De Couto, D.S.J.; Aguayo, D.; Bicket, J.; Morris, R. A high-throughput path metric for multi-hop wireless routing. Wirel. Netw. 2005, 11, 419–434. [CrossRef]Javaid, N.; Javaid, A.; Khan, I.A.; Djouani, K. Performance study of etx-based-based wireless routing metrics. In Proceedings of the 2009 2nd International Conference on Computer, Control and Communication (IC4 2009), Karachi, Pakistan, 17–18 February 2009; pp. 1–7.Kim, H.-S.; Ko, J.; Culler, D.E.; Paek, J. Challenging the IPv6 routing protocol for low-power and lossy networks (RPL): A survey. IEEE Commun. Surv. Tutor. 2017, 19, 2502–2525. [CrossRef]Kamgueu, P.O.; Nataf, E.; Ndié, T.D.; Festor, O. Energy-Based Routing Metric for RPL; INRIA: Roquecourbe, France, 2013.Thulasiraman, P. RPL routing for multigateway AMI networks under interference constraints. In Proceedings of the 2013 IEEE International Conference on Communications (ICC), Budapest, Hungary, 9–13 June 2013; pp. 4477–4482.Morton, A. Framework for Metric Composition; Framework; IETF: Fremont, CA, USA, 2010.Silva, M.D.; Senne, E.L.F.; Vijaykumar, N.L. An optimization model to minimize the expected end-to-end transmission time in wireless mesh networks. Pesq. Oper. 2017, 37, 209–227. [CrossRef]Aguirre, E.A.; Pedraza, L.F.; Puerta, G.A. WCETT routing-metric setup assessment on a cognitive radio network. Tecnura 2013, 17, 55–62. [CrossRef]Hinton, K.; Jalali, F. A survey of internet energy efficiency metrics. In Proceedings of the 2016 5th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), Rome, Italy, 23–25 April 2016; pp. 1–9.Yang, Y.;Wang, J. Design guidelines for routing metrics in multihop wireless networks. In Proceedings of the IEEE INFOCOM, Phoenix, AZ, USA, 13–18 April 2008; pp. 1615–1623.Fotouhi, H.; Moreira, D.; Alves, M. MRPL: Boosting mobility in the Internetthe Internet of things. Ad Hoc Netw. 2015, 26, 17–35. [CrossRef]Todolí-Ferrandis, D.; Santonja-Climent, S.; Sempere-Payá, V.; Silvestre-Blanes, J. RPL routing in a real life scenario with an energy efficient objective function. In Proceedings of the 2015 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 24–26 November 2015; pp. 285–288.Kim, H.-S.; Cho, H.; Kim, H.; Bahk, S. DT-RPL: Diverse bidirectional traffic delivery through RPL routing protocol in low power and lossy networks. Comput. Netw. 2017, 126, 150–161. [CrossRef]Duquennoy, S.; Eriksson, J.; Voigt, T. Five-nines reliable downward routing in RPL. arXiv, 2017.Khallef, W.; Molnar, M.; Benslimane, A.; Durand, S. Multiple constrained qos routing with RPL. In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6.Kim, H.S.; Paek, J.; Bahk, S. QU-RPL: Queue utilization-based-based RPL for load balancing in large scale industrial applications. In Proceedings of the 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Seattle, WA, USA, 22–25 June 2015; pp. 265–273.Zhao, M.; Kumar, A.; Chong, P.H.J.; Lu, R. A comprehensive study of RPL and P2P-RPL routing protocols: Implementation, challenges and opportunities. Peer-to-Peer Netw. Appl. 2017, 10, 1232–1256. [CrossRef]Díaz, J.M.; Mendoza, P.S.; Céspedes, J.D. Modelado y Simulación de Redes: Aplicación de los QoS con Opnet Modeler; Universidad del Norte: Barranquilla, DC, USA, 2013.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf5706991https://bonga.unisimon.edu.co/bitstreams/166b5b96-43aa-4478-91d1-829dd5ecd9b7/download26ca891bb32eb82abc29046f5290a259MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/3fcdf0f2-a97a-408d-87c8-57c76da2e291/download3fdc7b41651299350522650338f5754dMD52TEXTsensors Sigma Routing Metric.pdf.txtsensors Sigma Routing Metric.pdf.txtExtracted texttext/plain63054https://bonga.unisimon.edu.co/bitstreams/42c6650d-d54c-4ad5-bea6-154c6ac66193/download1932426e1d2ab1cd7ac21d21282f1ec1MD53PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain67335https://bonga.unisimon.edu.co/bitstreams/ee6ec974-583e-4c5a-b24c-21691fe85cf7/download069d6d50a489adb5fa8c76e8acdc4301MD55THUMBNAILsensors Sigma Routing Metric.pdf.jpgsensors Sigma Routing Metric.pdf.jpgGenerated Thumbnailimage/jpeg1585https://bonga.unisimon.edu.co/bitstreams/56003618-f004-41fb-b1e6-7dda39f72743/download675d7cdc8a1c2064e3265390a1a0d9a5MD54PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5297https://bonga.unisimon.edu.co/bitstreams/61fbc834-4253-486d-b3e3-3ceaf142f539/download3d805b1d8f5e879696a005058a7c308aMD5620.500.12442/2108oai:bonga.unisimon.edu.co:20.500.12442/21082024-07-25 04:16:08.47open.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=