Semi-automatic detection of hepatic tumor in computed tomography images

In this work, the main purpose is develop a computational segmentation strategy for liver tumor semiautomatic detection. This strategy considers three-dimensional computed tomography images and it consists of techniques application that, on the one hand, diminish the noise and detect the edges of th...

Full description

Autores:
Sáenz, F
Vera, M
López, J
Huérfano, Y
Valbuena, O
Vera, M I
Gelvez-Almeida, E
Salazar-Torres, J
Tipo de recurso:
Fecha de publicación:
2019
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/5098
Acceso en línea:
https://hdl.handle.net/20.500.12442/5098
Palabra clave:
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_50c310eb8c2d02fa93bd32cecac7b3e0
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/5098
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Semi-automatic detection of hepatic tumor in computed tomography images
title Semi-automatic detection of hepatic tumor in computed tomography images
spellingShingle Semi-automatic detection of hepatic tumor in computed tomography images
title_short Semi-automatic detection of hepatic tumor in computed tomography images
title_full Semi-automatic detection of hepatic tumor in computed tomography images
title_fullStr Semi-automatic detection of hepatic tumor in computed tomography images
title_full_unstemmed Semi-automatic detection of hepatic tumor in computed tomography images
title_sort Semi-automatic detection of hepatic tumor in computed tomography images
dc.creator.fl_str_mv Sáenz, F
Vera, M
López, J
Huérfano, Y
Valbuena, O
Vera, M I
Gelvez-Almeida, E
Salazar-Torres, J
dc.contributor.author.none.fl_str_mv Sáenz, F
Vera, M
López, J
Huérfano, Y
Valbuena, O
Vera, M I
Gelvez-Almeida, E
Salazar-Torres, J
description In this work, the main purpose is develop a computational segmentation strategy for liver tumor semiautomatic detection. This strategy considers three-dimensional computed tomography images and it consists of techniques application that, on the one hand, diminish the noise and detect the edges of the objects present in those images and, on the other hand, generate the liver tumor morphology. For this, the sequence of techniques composed of gaussian smoothing, gradient magnitude, median filter, region growing and binary morphological dilation are used. The value obtained, for the metric called Dice score, show a good correlation between manual segmentation, performed by a hepatologist, and the tumor segmentation obtained using the proposed technique. This type of segmentation is the extreme utility for the characterization of hepatic tumors and the planning of the clinical behavior to be followed in the treatment of this human liver disease.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-04-14T03:19:32Z
dc.date.available.none.fl_str_mv 2020-04-14T03:19:32Z
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.eng.fl_str_mv article
dc.identifier.issn.none.fl_str_mv 17426596
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/5098
identifier_str_mv 17426596
url https://hdl.handle.net/20.500.12442/5098
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.eng.fl_str_mv pdf
dc.publisher.eng.fl_str_mv IOP Publishing
dc.source.eng.fl_str_mv Journal of Physics: Conference Series
1408 (2019)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv https://iopscience.iop.org/article/10.1088/1742-6596/1408/1/012001
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/54c5832c-9303-47c8-8c8a-bab936ecbb9e/download
https://bonga.unisimon.edu.co/bitstreams/86172fa9-fbbe-49d5-90be-c9f5c5aff8c8/download
https://bonga.unisimon.edu.co/bitstreams/17c0a225-f7ed-4577-b9e4-9574913973a4/download
https://bonga.unisimon.edu.co/bitstreams/73c1bb5b-57f7-45b6-b5df-bbddb596011b/download
https://bonga.unisimon.edu.co/bitstreams/c8c4e6b7-6bab-4740-ae24-7e284345b3cf/download
https://bonga.unisimon.edu.co/bitstreams/d901df8c-1736-44cb-83da-dfe8b6277fd3/download
https://bonga.unisimon.edu.co/bitstreams/a7db6fec-4fe3-4fd5-8cd6-d529769e36a3/download
bitstream.checksum.fl_str_mv fe58e6251cc9775045da587d0b6f31c5
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
038fed283c6f19aca631ae542009611a
11993f1d773b2348ca102047f6a181e3
ce3b028d60a2e76f7c9e7d20ca0f302c
51203e17607fdb966b258a8502ed9c7f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1814076172475039744
spelling Sáenz, Fe7336b90-cde6-4d03-880d-55f6a198725dVera, M847eada8-99d3-4ff1-a613-ae3f62c30f9eLópez, J981f81ee-06f3-4ed3-bcf7-41a2d4f97e46Huérfano, Y001cc35e-75ac-48b8-9fd0-3c22464ff80fValbuena, O4286f2e0-ce46-49ce-a106-bd00c21a76e9Vera, M I4c675edd-c7b6-4fee-87e2-feb90cfc363eGelvez-Almeida, E55062614-d175-4da1-834a-d7e54dcc92deSalazar-Torres, J40a2a6c9-3e39-4994-9b5a-1c6112bd80002020-04-14T03:19:32Z2020-04-14T03:19:32Z201917426596https://hdl.handle.net/20.500.12442/5098In this work, the main purpose is develop a computational segmentation strategy for liver tumor semiautomatic detection. This strategy considers three-dimensional computed tomography images and it consists of techniques application that, on the one hand, diminish the noise and detect the edges of the objects present in those images and, on the other hand, generate the liver tumor morphology. For this, the sequence of techniques composed of gaussian smoothing, gradient magnitude, median filter, region growing and binary morphological dilation are used. The value obtained, for the metric called Dice score, show a good correlation between manual segmentation, performed by a hepatologist, and the tumor segmentation obtained using the proposed technique. This type of segmentation is the extreme utility for the characterization of hepatic tumors and the planning of the clinical behavior to be followed in the treatment of this human liver disease.pdfengIOP PublishingAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2Journal of Physics: Conference Series1408 (2019)https://iopscience.iop.org/article/10.1088/1742-6596/1408/1/012001Semi-automatic detection of hepatic tumor in computed tomography imagesarticlearticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Latarjet M and Ruiz A 2004 Anatomía humana (Barcelona: Médica Panamericana)Vera M 2014 Segmentación de estructuras cardiacas en imágenes de tomografía computarizada multicorte (Venezuela: Universidad de Los Andes)Tarasik A, Jaroszewicz J, Januszkiewicz M 2017 Surgical treatment of liver tumors – own experience and literature review Clin Exp Hepatol 3(1)Wu W, Wu S, Zhou Z, Zhang R, Zhang Y 2017 3D Liver tumor segmentation in ct images using improved fuzzy c-means and graph cuts BioMed Research International 2017 5207685Chlebus G, Schenk A, Moltz J, Van Ginneken B, Hahn H, Meine H 2018 Automatic liver tumor segmentation in ct with fully convolutional neural networks and object-based postprocessing Scientific Reports 8(1) 15497Meijering H 2000 Image enhancement in digital X ray angiography (Netherlands: Utrecht University)Pratt W 2007 Digital image processing (New York: John Wiley & Sons Inc)Huérfano Y, Vera M, Mar A, Bravo A 2019 Integrating a gradient–based difference operator with machine learning techniques in right heart segmentation. J. Phys. Conf. Ser. 1160 012003González R, Woods R 2001 Digital image processing (New Jersey: Prentice Hall)Petrou M, Bosdogianni P 2003 Image processing the fundamentals (UK: Wiley)Saénz F, Vera M, Huérfano Y, Molina V, Martinez L, Vera MI, Salazar W, Gelvez E, Salazar J, Valbuena O, Robles H, Bautista M, Arango J 2018 Brain hematoma computational segmentation. J. Phys. Conf. Ser. 1126 012071Dice L 1945 Measures of the amount of ecologic association between species Ecology 26(3) 29ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf763981https://bonga.unisimon.edu.co/bitstreams/54c5832c-9303-47c8-8c8a-bab936ecbb9e/downloadfe58e6251cc9775045da587d0b6f31c5MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/86172fa9-fbbe-49d5-90be-c9f5c5aff8c8/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/17c0a225-f7ed-4577-b9e4-9574913973a4/download733bec43a0bf5ade4d97db708e29b185MD53TEXTS-Automatic_detection_Hepatic_Tumor_CT.pdf.txtS-Automatic_detection_Hepatic_Tumor_CT.pdf.txtExtracted texttext/plain15902https://bonga.unisimon.edu.co/bitstreams/73c1bb5b-57f7-45b6-b5df-bbddb596011b/download038fed283c6f19aca631ae542009611aMD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain16403https://bonga.unisimon.edu.co/bitstreams/c8c4e6b7-6bab-4740-ae24-7e284345b3cf/download11993f1d773b2348ca102047f6a181e3MD56THUMBNAILS-Automatic_detection_Hepatic_Tumor_CT.pdf.jpgS-Automatic_detection_Hepatic_Tumor_CT.pdf.jpgGenerated Thumbnailimage/jpeg1285https://bonga.unisimon.edu.co/bitstreams/d901df8c-1736-44cb-83da-dfe8b6277fd3/downloadce3b028d60a2e76f7c9e7d20ca0f302cMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg3316https://bonga.unisimon.edu.co/bitstreams/a7db6fec-4fe3-4fd5-8cd6-d529769e36a3/download51203e17607fdb966b258a8502ed9c7fMD5720.500.12442/5098oai:bonga.unisimon.edu.co:20.500.12442/50982024-08-14 21:54:48.529http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u