Epicardial Adipose Tissue, Adiponectin and Leptin: A Potential Source of Cardiovascular Risk in Chronic Kidney Disease

The importance of cardiometabolic factors in the inception and progression of atherosclerotic cardiovascular disease is increasingly being recognized. Beyond diabetes mellitus and metabolic syndrome, other factors may be responsible in patients with chronic kidney disease (CKD) for the high prevalen...

Full description

Autores:
D’Marco, Luis
Puchades, Maria Jesús
Gorriz, Jose Luis
Romero-Parra, Maria
Lima-Martínez, Marcos
Soto, Carlos
Bermúdez, Valmore
Raggi, Paolo
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/5052
Acceso en línea:
https://hdl.handle.net/20.500.12442/5052
Palabra clave:
Adiponectin
Leptin
Epicardial Adipose Tissue
Cardiovascular disease
Rights
License
Attribution-NonCommercial-NoDerivatives 4.0 Internacional
id USIMONBOL2_4e81518ddaec0ddf1cca8171701a6b3a
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/5052
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.eng.fl_str_mv Epicardial Adipose Tissue, Adiponectin and Leptin: A Potential Source of Cardiovascular Risk in Chronic Kidney Disease
dc.title.translated.spa.fl_str_mv Tejido adiposo epicárdico, adiponectina y leptina: Una fuente potencial de riesgo cardiovascular en Enfermedad renal crónica
title Epicardial Adipose Tissue, Adiponectin and Leptin: A Potential Source of Cardiovascular Risk in Chronic Kidney Disease
spellingShingle Epicardial Adipose Tissue, Adiponectin and Leptin: A Potential Source of Cardiovascular Risk in Chronic Kidney Disease
Adiponectin
Leptin
Epicardial Adipose Tissue
Cardiovascular disease
title_short Epicardial Adipose Tissue, Adiponectin and Leptin: A Potential Source of Cardiovascular Risk in Chronic Kidney Disease
title_full Epicardial Adipose Tissue, Adiponectin and Leptin: A Potential Source of Cardiovascular Risk in Chronic Kidney Disease
title_fullStr Epicardial Adipose Tissue, Adiponectin and Leptin: A Potential Source of Cardiovascular Risk in Chronic Kidney Disease
title_full_unstemmed Epicardial Adipose Tissue, Adiponectin and Leptin: A Potential Source of Cardiovascular Risk in Chronic Kidney Disease
title_sort Epicardial Adipose Tissue, Adiponectin and Leptin: A Potential Source of Cardiovascular Risk in Chronic Kidney Disease
dc.creator.fl_str_mv D’Marco, Luis
Puchades, Maria Jesús
Gorriz, Jose Luis
Romero-Parra, Maria
Lima-Martínez, Marcos
Soto, Carlos
Bermúdez, Valmore
Raggi, Paolo
dc.contributor.author.none.fl_str_mv D’Marco, Luis
Puchades, Maria Jesús
Gorriz, Jose Luis
Romero-Parra, Maria
Lima-Martínez, Marcos
Soto, Carlos
Bermúdez, Valmore
Raggi, Paolo
dc.subject.eng.fl_str_mv Adiponectin
Leptin
Epicardial Adipose Tissue
Cardiovascular disease
topic Adiponectin
Leptin
Epicardial Adipose Tissue
Cardiovascular disease
description The importance of cardiometabolic factors in the inception and progression of atherosclerotic cardiovascular disease is increasingly being recognized. Beyond diabetes mellitus and metabolic syndrome, other factors may be responsible in patients with chronic kidney disease (CKD) for the high prevalence of cardiovascular disease, which is estimated to be 5- to 20-fold higher than in the general population. Although undefined uremic toxins are often blamed for part of the increased risk, visceral adipose tissue, and in particular epicardial adipose tissue (EAT), have been the focus of intense research in the past two decades. In fact, several lines of evidence suggest their involvement in atherosclerosis development and its complications. EAT may promote atherosclerosis through paracrine and endocrine pathways exerted via the secretion of adipocytokines such as adiponectin and leptin. In this article we review the current knowledge of the impact of EAT on cardiovascular outcomes in the general population and in patients with CKD. Special reference will be made to adiponectin and leptin as possible mediators of the increased cardiovascular risk linked with EAT.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-03-21T00:21:58Z
dc.date.available.none.fl_str_mv 2020-03-21T00:21:58Z
dc.date.issued.none.fl_str_mv 2020
dc.type.eng.fl_str_mv article
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.driver.eng.fl_str_mv article
dc.identifier.issn.none.fl_str_mv 14220067
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12442/5052
identifier_str_mv 14220067
url https://hdl.handle.net/20.500.12442/5052
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.eng.fl_str_mv pdf
dc.publisher.spa.fl_str_mv MDPI
dc.source.eng.fl_str_mv MDPI
Vol. 21, No. 3 (2020)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv https://doi.org/10.3390/ijms21030978
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/89ee1499-f84e-4dd0-953e-b1b632e3c7fb/download
https://bonga.unisimon.edu.co/bitstreams/17d5e932-c671-4f9c-898f-9e1523cf2922/download
https://bonga.unisimon.edu.co/bitstreams/c7f0f614-d32c-42fe-878d-42b986d36bbe/download
https://bonga.unisimon.edu.co/bitstreams/34bfd7c5-3f8b-4667-be99-c4ee21b36087/download
https://bonga.unisimon.edu.co/bitstreams/80c60e50-94a4-40a6-b2d3-76c020c50ee1/download
https://bonga.unisimon.edu.co/bitstreams/65cb3d2d-c7aa-4061-a031-23a0bbb78d1f/download
https://bonga.unisimon.edu.co/bitstreams/13b02570-4d74-4a2b-a57c-37f0b4baef61/download
bitstream.checksum.fl_str_mv 133f5b3190c86daf6ce65db6d66d6953
4460e5956bc1d1639be9ae6146a50347
733bec43a0bf5ade4d97db708e29b185
22acd33165dea9ef86663c96f6201d86
34d9a84c70d24ae2b54b716bb84ab9bb
d4a65282fdc3b018557e7b4506de25cc
821e25df88099d6ca1eb305a59f81067
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Digital Universidad Simón Bolívar
repository.mail.fl_str_mv repositorio.digital@unisimon.edu.co
_version_ 1812100476655632384
spelling D’Marco, Luisb847abd0-611f-4212-9d68-bf44069a7da7Puchades, Maria Jesús6f529111-c64c-452d-aeea-613e9fd97ee6Gorriz, Jose Luis5157f875-79e2-4798-b486-b34e2135280bRomero-Parra, Maria3ce3ea9f-f036-4568-93f8-0268e07c8156Lima-Martínez, Marcos9fee00f2-7c52-4239-bd7a-51155826b2d2Soto, Carlos7ffd9571-c0f5-4157-9e72-07cc8779b86bBermúdez, Valmore29f9aa18-16a4-4fd3-8ce5-ed94a0b8663aRaggi, Paolo1e0b2a7d-405e-4087-bd63-1a83b652ced32020-03-21T00:21:58Z2020-03-21T00:21:58Z202014220067https://hdl.handle.net/20.500.12442/5052The importance of cardiometabolic factors in the inception and progression of atherosclerotic cardiovascular disease is increasingly being recognized. Beyond diabetes mellitus and metabolic syndrome, other factors may be responsible in patients with chronic kidney disease (CKD) for the high prevalence of cardiovascular disease, which is estimated to be 5- to 20-fold higher than in the general population. Although undefined uremic toxins are often blamed for part of the increased risk, visceral adipose tissue, and in particular epicardial adipose tissue (EAT), have been the focus of intense research in the past two decades. In fact, several lines of evidence suggest their involvement in atherosclerosis development and its complications. EAT may promote atherosclerosis through paracrine and endocrine pathways exerted via the secretion of adipocytokines such as adiponectin and leptin. In this article we review the current knowledge of the impact of EAT on cardiovascular outcomes in the general population and in patients with CKD. Special reference will be made to adiponectin and leptin as possible mediators of the increased cardiovascular risk linked with EAT.pdfengMDPIAttribution-NonCommercial-NoDerivatives 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/http://purl.org/coar/access_right/c_abf2MDPIVol. 21, No. 3 (2020)https://doi.org/10.3390/ijms21030978AdiponectinLeptinEpicardial Adipose TissueCardiovascular diseaseEpicardial Adipose Tissue, Adiponectin and Leptin: A Potential Source of Cardiovascular Risk in Chronic Kidney DiseaseTejido adiposo epicárdico, adiponectina y leptina: Una fuente potencial de riesgo cardiovascular en Enfermedad renal crónicaarticlearticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/resource_type/c_6501Russo, R.; Di Iorio, B.; Di Lullo, L.; Russo, D. Epicardial adipose tissue: New parameter for cardiovascular risk assessment in high risk populations. J. Nephrol. 2018, 31, 847–853.Bornachea, O.; Vea, A.; Llorente-Cortes, V. Interplay between epicardial adipose tissue, metabolic and cardiovascular diseases. Clin. Investig. Arterioscler. 2018, 30, 230–239.Singh, N.; Singh, H.; Khanijoun, H.K.; Iacobellis, G. Echocardiographic assessment of epicardial adipose tissue—A marker of visceral adiposity. Mcgill. J. Med. 2007, 10, 26–30.anik, M.; Hartlage, G.; Alexopoulos, N.; Mirzoyev, Z.; McLean, D.S.; Arepalli, C.D.; Chen, Z.; Stillman, A.E.; Raggi, P. Epicardial adipose tissue volume and coronary artery calcium to predict myocardial ischemia on positron emission tomography-computed tomography studies. J. Nucl. Cardiol. 2010, 17, 841–847.Nelson, A.J.; Worthley, M.I.; Psaltis, P.J.; Carbone, A.; Dundon, B.K.; Duncan, R.F.; Piantadosi, C.; Lau, D.H.; Sanders, P.; Wittert, G.A.; et al. Validation of cardiovascular magnetic resonance assessment of pericardial adipose tissue volume. J. Cardiovasc. Magn. Reson. 2009, 11, 15.Alexopoulos, N.; McLean, D.S.; Janik, M.; Arepalli, C.D.; Stillman, A.E.; Raggi, P. Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis 2010, 210, 150–154Nerlekar, N.; Brown, A.J.; Muthalaly, R.G.; Talman, A.; Hettige, T.; Cameron, J.D.; Wong, D.T.L. Association of epicardial adipose tissue and high-risk plaque characteristics: A systematic review and meta-analysis. J. Am. Heart Assoc. 2017, 6, e006379.Bachar, G.N.; Dicker, D.; Kornowski, R.; Atar, E. Epicardial adipose tissue as a predictor of coronary artery disease in asymptomatic subjects. Am. J. Cardiol. 2012, 110, 534–538Ding, J.; Hsu, F.-C.; Harris, T.B.; Liu, Y.; Kritchevsky, S.B.; Szklo, M.; Ouyang, P.; Espeland, M.A.; Lohman, K.K.; Criqui, M.H.; et al. The association of pericardial fat with incident coronary heart disease: The Multi-Ethnic Study of Atherosclerosis (MESA). Am. J. Clin. Nutr. 2009, 90, 499–504.Turkmen, K.; Kayikcioglu, H.; Ozbek, O.; Solak, Y.; Kayrak, M.; Samur, C.; Anil, M.; Zeki Tonbul, H. The relationship between epicardial adipose tissue and malnutrition, inflammation, atherosclerosis/calcification syndrome in ESRD patients. Clin. J. Am. Soc. Nephrol. 2011, 6, 1920–1925.Cordeiro, A.C.; Amparo, F.C.; Oliveira, M.A.C.; Amodeo, C.; Smanio, P.; Pinto, I.M.; Lindholm, B.; Stenvinkel, P.; Carrero, J.J. Epicardial fat accumulation, cardiometabolic profile and cardiovascular events in patients with stages 3-5 chronic kidney disease. J. Intern. Med. 2015, 278, 77–87.Gansevoort, R.T.; Correa-Rotter, R.; Hemmelgarn, B.R.; Jafar, T.H.; Heerspink, H.J.L.; Mann, J.F.; Matsushita, K.; Wen, C.P. Chronic kidney disease and cardiovascular risk: Epidemiology, mechanisms, and prevention. Lancet 2013, 382, 339–352.Sarnak, M.J.; Levey, A.S.; Schoolwerth, A.C.; Coresh, J.; Culleton, B.; Hamm, L.L.; McCullough, P.A.; Kasiske, B.L.; Kelepouris, E.; Klag, M.J.; et al. Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association councils on kidney in cardiovascular disease, high blood pressure research, clinical cardiology, and epidemiology and prevention. Hypertension 2003, 42, 1050–1065.Levin, A.; Rigatto, C.; Brendan, B.; Madore, F.; Muirhead, N.; Holmes, D. Cohort profile: Canadian study of prediction of death, dialysis and interim cardiovascular events (CanPREDDICT ). BMC Nephrol. 2013, 14, 121.Berl, T.; Henrich, W. Kidney-heart interactions: Epidemiology, pathogenesis, and treatment. Clin. J. Am. Soc. Nephrol. 2006, 1, 8–18.D’Marco, L.; Bellasi, A.; Raggi, P. Cardiovascular biomarkers in chronic kidney disease: State of current research and clinical applicability. Dis. Markers 2015, 2015, 1–16.Vickery, S.; Webb, M.C.; Price, C.P.; John, R.I.; Abbas, N.A.; Lamb, E.J. Prognostic value of cardiac biomarkers for death in a non-dialysis chronic kidney disease population. Nephrol. Dial. Transplant. 2008, 11, 3546–3553Rabkin, S.W. Epicardial fat: Properties, function and relationship to obesity. Obes. Rev. 2007, 8, 253–261.Iacobellis, G.; Bianco, A.C. Epicardial adipose tissue: Emerging physiological, pathophysiological and clinical features. Trends Endocrinol. Metab. 2011, 22, 450–457.Marchington, J.M.; Mattacks, C.A.; Pond, C.M. Adipose tissue in the mammalian heart and pericardium: Structure, foetal development and biochemical properties. Comp. Biochem. Physiol. B. 1989, 94, 225–232.Corradi, D.; Maestri, R.; Callegari, S.; Pastori, P.; Goldoni, M.; Luong, T.V.; Bordi, C. The ventricular epicardial fat is related to the myocardial mass in normal, ischemic and hypertrophic hearts. Cardiovasc. Pathol. 2004, 13, 313–316.Pezeshkian, M.; Noori, M.; Najjarpour-Jabbari, H.; Abolfathi, A.; Darabi, M.; Darabi, M.; Darabi, M.; Shaaker, M.; Shahmohammadi, G. Fatty acid composition of epicardial and subcutaneous human adipose tissue. Metab. Syndr. Relat. Disord. 2009, 7, 125–131.Sacks, H.S.; Fain, J.N.; Holman, B.; Cheema, P.; Chary, A.; Parks, F.; Karas, J.; Optican, R.; Bahouth, S.W.; Garrett, E.; et al. Uncoupling protein-1 and related messenger ribonucleic acids in human epicardial and other adipose tissues: Epicardial fat functioning as brown fat. J. Clin. Endocrinol. Metab. 2009, 94, 3611–3615.Iacobellis, G. Epicardial and pericardial fat: Close, but very different. Obesity 2009, 17, 625–627.Akoumianakis, I.; Antoniades, C. The interplay between adipose tissue and the cardiovascular system: Is fat always bad? Cardiovasc. Res. 2017, 113, 999–1008.Turer, A.T.; Scherer, P.E. Adiponectin: Mechanistic insights and clinical implications. Diabetologia 2012, 55, 2319–2326.Salazar, J.; Luzardo, E.; Mejías, J.C.; Rojas, J.; Ferreira, A.; Rivas-Ríos, J.R.; Bermúdez, V. Epicardial Fat: Physiological, Pathological, and Therapeutic Implications. Cardiol. Res. Pract. 2016, 2016, 1291537.Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97.Kaisar, O.M.; Johnson, D.W.; Prins, J.B.; Isbel, N. The role of novel biomarkers of cardiovascular disease in chronic kidney disease: Focus on adiponectin and leptin. Curr. Cardiol. Rev. 2008, 287–292.Wong, H.K.; Cheung, T.T.; Cheung, B.M.Y. Adrenomedullin and cardiovascular diseases. JRSM Cardiovasc. Dis. 2012, 1, 1–7.Scholze, A.; Tepel, M. Role of leptin in reverse epidemiology in chronic kidney disease. Semin. Dial. 2007, 20, 534–538.Ueno, K.; Anzai, T.; Jinzaki, M.; Yamada, M.; Jo, Y.; Maekawa, Y.; Kawamura, A.; Yoshikawa, T.; Tanami, Y.; Sato, K.; et al. Increased Epicardial Fat Volume Quantified by 64-Multidetector Computed Tomography is Associated With Coronary Atherosclerosis and Totally Occlusive Lesions. Circ. J. 2009, 73, 1927–1933.Reinhardt, M.; Cushman, T.R.; Thearle, M.S.; Krakoff, J. Epicardial adipose tissue is a predictor of decreased kidney function and coronary artery calcification in youth- and early adult onset type 2 diabetes mellitus. J. Endocrinol. Investig. 2019, 42, 979–986.Nakanishi, K.; Fukuda, S.; Tanaka, A.; Otsuka, K.; Taguchi, H.; Yoshikawa, J.; Shimada, K. Epicardial adipose tissue accumulation is associated with renal dysfunction and coronary plaque morphology on multidetector computed tomography. Circ. J. 2015, 80, 196–201.Karohl, C.; D’Marco, L.; Bellasi, A.; Raggi, P. Hybrid myocardial imaging for risk stratification prior to kidney transplantation: Added value of coronary calcium and epicardial adipose tissue. J. Nucl. Cardiol. 2013, 20, 1013–1020.D’Marco, L.G.; Bellasi, A.; Kim, S.; Chen, Z.; Block, G.A.; Raggi, P. Epicardial adipose tissue predicts mortality in incident hemodialysis patients: A substudy of the Renagel in New Dialysis trial. Nephrol. Dial. Transplant. 2013, 28, 2586–2595.Iacobellis, G.; Pistilli, D.; Gucciardo, M.; Leonetti, F.; Miraldi, F.; Brancaccio, G.; Gallo, P.; di Gioia, C.R. Adiponectin expression in human epicardial adipose tissue in vivo is lower in patients with coronary artery disease. Cytokine 2005, 29, 251–255.Cheng, K.H.; Chu, C.S.; Lee, K.T.; Lin, T.H.; Hsieh, C.C.; Chiu, C.C.; Voon, W.C.; Sheu, S.H.; Lai, W.T. Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int. J. Obes. 2008, 32, 268–274.Mazurek, T.; Zhang, L.F.; Zalewski, A.; Mannion, J.D.; Diehl, J.T.; Arafat, H.; Sarov-Blat, L.; O’Brien, S.; Keiper, E.A.; Johnson, A.G.; et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003, 108, 2460–2466.Ouchi, N.; Kihara, S.; Arita, Y.; Okamoto, Y.; Maeda, K.; Kuriyama, H.; Hotta, K.; Nishida, M.; Takahashi, M.; Muraguchi, M.; et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 2000, 102, 1296–1301Baker, A.R.; Silva, N.F.; da Quinn, D.W.; Harte, A.L.; Pagano, D.; Bonser, R.S.; Kumar, S.; McTernan, P.G. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc. Diabetol. 2006, 5, 1.Ghantous, C.M.; Azrak, Z.; Hanache, S.; Abou-Kheir, W.; Zeidan, A. Differential role of leptin and adiponectin in cardiovascular system. Int. J. Endocrinol. 2015, 2015, 534320.Kershaw, E.E.; Flier, J.S. Adipose tissue as an endocrine organ. J. Clin. Endocrinol. Metab. 2004, 89, 2548–2556.Trujillo, M.E.; Sullivan, S.; Harten, I.; Schneider, S.H.; Greenberg, A.S.; Fried, S.K. Interleukin-6 regulates human adipose tissue lipid metabolism and leptin production in vitro. J. Clin. Endocrinol. Metab. 2004, 89, 5577–5582.Fisher, F.F.M.; Trujillo, M.E.; Hanif, W.; Barnett, A.H.; McTernan, P.G.; Scherer, P.E.; Kumar, S. Serum high molecular weight complex of adiponectin correlates better with glucose tolerance than total serum adiponectin in Indo-Asian males. Diabetologia 2005, 48, 1084–1087.Bouskila, M.; Pajvani, U.B.; Scherer, P.E. Adiponectin: A relevant player in PPARgamma-agonist-mediated improvements in hepatic insulin sensitivity? Int. J. Obes. 2005, 29, S17–S23.Whitehead, J.P.; Richards, A.A.; Hickman, I.J.; Macdonald, G.A.; Prins, J.B. Adiponectin—A key adipokine in the metabolic syndrome. Diabetes Obes. Metab. 2006, 8, 264–280.Komura, N.; Kihara, S.; Sonoda, M.; Maeda, N.; Tochino, Y.; Funahashi, T.; Shimomura, I. Increment and impairment of adiponectin in renal failure. Cardiovasc. Res. 2010, 86, 471–477.Kumada, M.; Kihara, S.; Sumitsuji, S.; Kawamoto, T.; Matsumoto, S.; Ouchi, N.; Arita, Y.; Okamoto, Y.; Shimomura, I.; Hiraoka, H.; et al. Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 85–89.Zoccali, C.; Mallamaci, F. Adiponectin and leptin in chronic kidney disease: Causal factors or mere risk markers? J. Ren. Nutr. 2011, 21, 87–91.Zoccali, C.; Mallamaci, F.; Tripepi, G.; Benedetto, F.A.; Cutrupi, S.; Parlongo, S.; Malatino, L.S.; Bonanno, G.; Seminara, G.; Rapisarda, F.; et al. Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J. Am. Soc. Nephrol. 2002, 13, 134–141.Becker, B.; Kronenberg, F.; Kielstein, J.T.; Haller, H.; Morath, C. Renal insulin resistance syndrome, adiponectin and cardiovascular events in patients with kidney disease: The Mild and Moderate Kidney Disease Study. J. Am. Soc. Nephrol. 2005, 16, 1091–1098.Menon, V.; Li, L.; Wang, X.; Greene, T.; Balakrishnan, V.; Madero, M.; Pereira, A.A.; Beck, G.J.; Kusek, J.W.; Collins, A.J.; et al. Adiponectin and mortality in patients with chronic kidney disease. J. Am. Soc. Nephrol. 2006, 17, 2599–2606.Nisoli, E.; Tonello, C.; Briscini, L.; Flaim, R.; Carruba, M.O. Leptin and nerve growth factor regulate adipose tissue. Nat. Med. 1996, 2, 130.Stenvinkel, P. Leptin—A new hormone of definite interest for the nephrologist. Nephrol. Dial. Transplant. 1998, 13, 1099–1101.Fried, S.K.; Ricci, M.R.; Russell, C.D.; Laferrère, B. Regulation of leptin production in humans. J. Nutr. 2000, 130, 3127S–3131S.Considine, R.V.; Sinha, M.K.; Heiman, M.L.; Kriauciunas, A.; Stephens, T.W.; Nyce, M.R.; Ohannesian, J.P.; Marco, C.C.; McKee, L.J.; Bauer, T.L.; et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N. Engl. J. Med. 1996, 334, 292–295.Maffei, M.; Halaas, J.; Ravussin, E.; Pratley, R.E.; Lee, G.H.; Zhang, Y.; Fei, H.; Kim, S.; Lallone, R.; Ranganathan, S.; et al. Leptin levels in human and rodent: Measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med. 1995, 1, 1155–1161.Boden, G.; Sargrad, K.; Homko, C.; Mozzoli, M.; Stein, T.P. Effect of a low-carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann. Intern. Med. 2005, 142, 403–411Merabet, E.; Dagogo-Jack, S.; Coyne, D.W.; Klein, S.; Santiago, J.V.; Hmiel, S.P.; Landt, M. Increased plasma leptin concentration in end-stage renal disease. J. Clin. Endocrinol. Metab. 1997, 82, 847–850.Díez, J.J.; Iglesias, P.; Fernández-Reyes, M.J.; Aguilera, A.; Bajo, M.A.; Alvarez-Fidalgo, P.; Codoceo, R.; Selgas, R. Serum concentrations of leptin, adiponectin and resistin, and their relationship with cardiovascular disease in patients with end-stage renal disease. Clin. Endocrinol. 2005, 62, 242–249.Teta, D.; Bevington, A.; Brown, J.; Pawluczyk, I.; Harris, K.; Walls, J. Acidosis downregulates leptin production from cultured adipocytes through a glucose transport-dependent post-transcriptional mechanism. J. Am. Soc. Nephrol. 2003, 14, 2248–2254.Ciccone, M.; Vettor, R.; Pannacciulli, N.; Minenna, A.; Bellacicco, M.; Rizzon, P.; Giorgino, R.; De Pergola, G. Plasma leptin is independently associated with the intima-media thickness of the common carotid artery. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 805–810.Singhal, A.; Farooqi, I.S.; Cole, T.J.; Rahilly, S.O.; Fewtrell, M.; Kattenhorn, M.; Lucas, A.; Deanfield, J. Influence of leptin on arterial distensibility. Circulation 2002, 106, 1919–1924.Lee, M.-C.; Chen, Y.-C.; Ho, G.-J.; Shih, M.-H.; Chou, K.-C.; Hsu, B.-G. Serum leptin levels positively correlate with peripheral arterial stiffness in kidney transplantation patients. Transplant. Proc. 2014, 46, 353–358.Aguilera, A.; Bajo, M.A.; Rebollo, F.; Díez, J.J.; Díaz, C.; Paiva, A.; Codoceo, R.; Selgas, R. Leptin as a marker of nutrition and cardiovascular risk in peritoneal dialysis patients. Adv. Perit. Dial. 2002, 18, 212–217.Noor, S.; Alam, F.; Fatima, S.S.; Khan, M.; Rehman, R. Role of Leptin and dyslipidemia in chronic kidney disease. Pak. J. Pharm. Sci. 2018, 31, 893–897.Kastarinen, H.; Kesäniemi, Y.A.; Ukkola, O. Leptin and lipid metabolism in chronic kidney failure. Scand. J. Clin. Lab. Investig. 2009, 69, 401–408.Scholze, A.; Rattensperger, D.; Zidek, W.; Tepel, M. Low serum leptin predicts mortality in patients with chronic kidney disease stage 5. Obesity 2007, 15, 1617–1622.Beberashvili, I.; Sinuani, I.; Azar, A.; Yasur, H.; Feldman, L.; Averbukh, Z.; Weissgarten, J. Longitudinal study of leptin levels in chronic hemodialysis patients. Nutr. J. 2011, 10, 68.Tsai, Y.-C.; Lee, C.-T.; Huang, T.-L.; Cheng, B.-C.; Kuo, C.-C.; Su, Y.; Ng, H.Y.; Yang, C.C.; Chuang, F.R.; Liao, S.C. Inflammatory marker but not adipokine predicts mortality among long-term hemodialysis patients. Mediators. Inflamm. 2007, 2007, 19891.Nakazato, R.; Rajani, R.; Cheng, V.Y.; Shmilovich, H.; Nakanishi, R.; Otaki, Y.; Gransar, H.; Slomka, P.J.; Hayes, S.W.; Thomson, L.E.; et al. Weight change modulates epicardial fat burden: A 4-year serial study with non-contrast computed tomography. Atherosclerosis 2012, 220, 139–144.Parisi, V.; Petraglia, L.; D’Esposito, V.; Cabaro, S.; Rengo, G.; Caruso, A.; Grimaldi, M.G.; Baldascino, F.; De Bellis, A.; Vitale, D.; et al. Statin therapy modulates thickness and inflammatory profile of human epicardial adipose tissue. Int. J. Cardiol. 2019, 274, 326–330.Alexopoulos, N.; Melek, B.H.; Arepalli, C.D.; Hartlage, G.-R.; Chen, Z.; Kim, S.; Stillman, A.E.; Raggi, P. Effect of intensive versus moderate lipid-lowering therapy on epicardial adipose tissue in hyperlipidemic post-menopausal women: A substudy of the BELLES trial (Beyond Endorsed Lipid Lowering with EBT Scanning). J. Am. Coll. Cardiol. 2013, 61, 1956–1961.Subbotin, V.M. Neovascularization of coronary tunica intima (DIT) is the cause of coronary atherosclerosis. Lipoproteins invade coronary intima via neovascularization from adventitial vasa vasorum, but not from the arterial lumen: A hypothesis. Theor. Biol. Med. Model. 2012, 9, 11.Lima-Martínez, M.M.; Paoli, M.; Rodney, M.; Balladares, N.; Contreras, M.; D’Marco, L.; Iacobellis, G. Effect of sitagliptin on epicardial fat thickness in subjects with type 2 diabetes and obesity: A pilot study. Endocrine 2016, 51, 448–455.Sacks, H.S.; Fain, J.N.; Cheema, P.; Bahouth, S.W.; Garrett, E.; Wolf, R.Y.; Wolford, D.; Samaha, J. Inflammatory genes in epicardial fat contiguous with coronary atherosclerosis in the metabolic syndrome and type 2 diabetes: Changes associated with pioglitazone. Diabetes Care 2011, 34, 730–733.Ko, S.M.; Zhang, C.; Chen, Z.; D’Marco, L.; Bellasi, A.; Stillman, A.E.; Block, G.; Raggi, P. Epicardial adipose tissue volume increase in hemodialysis patients treated with sevelamer or calcium-based phosphate binders: A substudy of the Renagel in new dialysis trial. J. Nephrol. 2016, 29, 683–690.Marchington, J.M.; Pond, C.M. Site-specific properties of pericardial and epicardial adipose tissue: The effects of insulin and high-fat feeding on lipogenesis and the incorporation of fatty acids in vitro. Int. J. Obes. 1990, 14, 1013–1022.Ishikawa, Y.; Ishii, T.; Asuwa, N.; Masuda, S. Absence of atherosclerosis evolution in the coronary arterial segment covered by myocardial tissue in cholesterol-fed rabbits. Virchows Arch. 1997, 430, 163–171.Wang, J.; Chen, D.; Cheng, X.M.; Zhang, Q.G.; Peng, Y.P.; Wang, L.J.; He, S.Q.; Gong, J.B. Influence of phenotype conversion of epicardial adipocytes on the coronary atherosclerosis and its potential molecular mechanism. Am. J. Transl. Res. 2015, 7, 1712–1723.Bale, L.K.; West, S.A.; Conover, C.A. Characterization of mouse pericardial fat: Regulation by PAPP-A. Growth. Horm. IGF Res. 2018, 42, 1–7.Wu, L.; Dalal, R.; Cao, C.D.; Postoak, J.L.; Yang, G.; Zhang, Q.; Wang, Z.; Lal, H.; Van Kaer, L. IL-10-producing B cells are enriched in murine pericardial adipose tissues and ameliorate the outcome of acute myocardial infarction. Proc. Natl. Acad. Sci. USA 2019, 116, 21673–21684.ORIGINALPDF.pdfPDF.pdfPDFapplication/pdf1597404https://bonga.unisimon.edu.co/bitstreams/89ee1499-f84e-4dd0-953e-b1b632e3c7fb/download133f5b3190c86daf6ce65db6d66d6953MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://bonga.unisimon.edu.co/bitstreams/17d5e932-c671-4f9c-898f-9e1523cf2922/download4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-8381https://bonga.unisimon.edu.co/bitstreams/c7f0f614-d32c-42fe-878d-42b986d36bbe/download733bec43a0bf5ade4d97db708e29b185MD53TEXTEpicardial-Adipose-Tissue_Adiponectin_Leptin.pdf.txtEpicardial-Adipose-Tissue_Adiponectin_Leptin.pdf.txtExtracted texttext/plain66479https://bonga.unisimon.edu.co/bitstreams/34bfd7c5-3f8b-4667-be99-c4ee21b36087/download22acd33165dea9ef86663c96f6201d86MD54PDF.pdf.txtPDF.pdf.txtExtracted texttext/plain73980https://bonga.unisimon.edu.co/bitstreams/80c60e50-94a4-40a6-b2d3-76c020c50ee1/download34d9a84c70d24ae2b54b716bb84ab9bbMD56THUMBNAILEpicardial-Adipose-Tissue_Adiponectin_Leptin.pdf.jpgEpicardial-Adipose-Tissue_Adiponectin_Leptin.pdf.jpgGenerated Thumbnailimage/jpeg1617https://bonga.unisimon.edu.co/bitstreams/65cb3d2d-c7aa-4061-a031-23a0bbb78d1f/downloadd4a65282fdc3b018557e7b4506de25ccMD55PDF.pdf.jpgPDF.pdf.jpgGenerated Thumbnailimage/jpeg5404https://bonga.unisimon.edu.co/bitstreams/13b02570-4d74-4a2b-a57c-37f0b4baef61/download821e25df88099d6ca1eb305a59f81067MD5720.500.12442/5052oai:bonga.unisimon.edu.co:20.500.12442/50522024-08-14 21:52:31.738http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internacionalopen.accesshttps://bonga.unisimon.edu.coRepositorio Digital Universidad Simón Bolívarrepositorio.digital@unisimon.edu.coPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowO3dpZHRoOjEwMHB4OyIgc3JjPSJodHRwczovL2kuY3JlYXRpdmVjb21tb25zLm9yZy9sL2J5LW5jLzQuMC84OHgzMS5wbmciIC8+PC9hPjxici8+RXN0YSBvYnJhIGVzdMOhIGJham8gdW5hIDxhIHJlbD0ibGljZW5zZSIgaHJlZj0iaHR0cDovL2NyZWF0aXZlY29tbW9ucy5vcmcvbGljZW5zZXMvYnktbmMvNC4wLyI+TGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBBdHJpYnVjacOzbi1Ob0NvbWVyY2lhbCA0LjAgSW50ZXJuYWNpb25hbDwvYT4u