A Signal Processing Method for Respiratory Rate Estimation through Photoplethysmography

Monitoring of respiration is crucial for determining a patient´s health status, specially previously and after an operation. However, many conventional methods are difficult to use in a spontaneously ventilating patient. This paper presents a method for estimating respiratory rate from the signal of...

Full description

Autores:
Moreno, Silvia
Quintero-Parra, Andres
Ochoa-Pertuz, Carlos
Villarreal, Reynaldo
Kuzmar, Isaac
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Simón Bolívar
Repositorio:
Repositorio Digital USB
Idioma:
eng
OAI Identifier:
oai:bonga.unisimon.edu.co:20.500.12442/2342
Acceso en línea:
http://hdl.handle.net/20.500.12442/2342
Palabra clave:
Biomedical signal processing
Photoplethysmography
Telemedicine
Respiratory rate
Rights
License
Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
id USIMONBOL2_4afecde72cce0674332a0950900f52ff
oai_identifier_str oai:bonga.unisimon.edu.co:20.500.12442/2342
network_acronym_str USIMONBOL2
network_name_str Repositorio Digital USB
repository_id_str
dc.title.spa.fl_str_mv A Signal Processing Method for Respiratory Rate Estimation through Photoplethysmography
title A Signal Processing Method for Respiratory Rate Estimation through Photoplethysmography
spellingShingle A Signal Processing Method for Respiratory Rate Estimation through Photoplethysmography
Biomedical signal processing
Photoplethysmography
Telemedicine
Respiratory rate
title_short A Signal Processing Method for Respiratory Rate Estimation through Photoplethysmography
title_full A Signal Processing Method for Respiratory Rate Estimation through Photoplethysmography
title_fullStr A Signal Processing Method for Respiratory Rate Estimation through Photoplethysmography
title_full_unstemmed A Signal Processing Method for Respiratory Rate Estimation through Photoplethysmography
title_sort A Signal Processing Method for Respiratory Rate Estimation through Photoplethysmography
dc.creator.fl_str_mv Moreno, Silvia
Quintero-Parra, Andres
Ochoa-Pertuz, Carlos
Villarreal, Reynaldo
Kuzmar, Isaac
dc.contributor.author.none.fl_str_mv Moreno, Silvia
Quintero-Parra, Andres
Ochoa-Pertuz, Carlos
Villarreal, Reynaldo
Kuzmar, Isaac
dc.subject.eng.fl_str_mv Biomedical signal processing
Photoplethysmography
Telemedicine
Respiratory rate
topic Biomedical signal processing
Photoplethysmography
Telemedicine
Respiratory rate
description Monitoring of respiration is crucial for determining a patient´s health status, specially previously and after an operation. However, many conventional methods are difficult to use in a spontaneously ventilating patient. This paper presents a method for estimating respiratory rate from the signal of a photoplethysmograph. This is a non-invasive sensor that can be used to obtain an estimation of beats per minute of a given patient by measuring light reflection on the patient’s blood vessel and counting changes in blood flow. The PPG signal also offers information about respiration, so respiratory rate can be obtained through signal processing. The proposed method based on digital filtering was implemented in a wearable device and tested on 30 volunteers, and the results were compared with the ones measured by traditional ways. The results show that there is no statistically significant difference between the data measured by the device and the traditional method.
publishDate 2018
dc.date.accessioned.none.fl_str_mv 2018-11-09T19:29:49Z
dc.date.available.none.fl_str_mv 2018-11-09T19:29:49Z
dc.date.issued.none.fl_str_mv 2018-02
dc.type.eng.fl_str_mv article
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.identifier.issn.none.fl_str_mv 20054254
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12442/2342
identifier_str_mv 20054254
url http://hdl.handle.net/20.500.12442/2342
dc.language.iso.eng.fl_str_mv eng
language eng
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
rights_invalid_str_mv Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional
http://purl.org/coar/access_right/c_abf2
dc.publisher.eng.fl_str_mv Sciencie &Engineering Research Support Society (SERSC)
dc.source.eng.fl_str_mv International Journal of Signal Processing, Image Processing and Pattern Recognition
dc.source.spa.fl_str_mv Vol. 11, No. 2 (2018)
institution Universidad Simón Bolívar
dc.source.uri.eng.fl_str_mv https://www.researchgate.net/publication/324843101_A_Signal_Processing_Method_for_Respiratory_Rate_Estimation_through_Photoplethysmography
bitstream.url.fl_str_mv https://bonga.unisimon.edu.co/bitstreams/96ff1982-4989-4561-9cc1-4b7e413bb7f8/download
bitstream.checksum.fl_str_mv 3fdc7b41651299350522650338f5754d
bitstream.checksumAlgorithm.fl_str_mv MD5
repository.name.fl_str_mv DSpace UniSimon
repository.mail.fl_str_mv bibliotecas@biteca.com
_version_ 1814076168895201280
spelling Licencia de Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacionalhttp://purl.org/coar/access_right/c_abf2Moreno, Silvia93dbe641-5f99-4a7d-bfd9-faa0ea07e8dd-1Quintero-Parra, Andres07c89137-b06f-4923-bc86-d2072e125bef-1Ochoa-Pertuz, Carlosf67d371f-db25-44ce-8240-7ab75c3aafb2-1Villarreal, Reynaldo342430b4-b933-4003-bd80-2c8f9f588a13-1Kuzmar, Isaac532c55ce-6c8d-4a73-b7b6-77619a586ed1-12018-11-09T19:29:49Z2018-11-09T19:29:49Z2018-0220054254http://hdl.handle.net/20.500.12442/2342Monitoring of respiration is crucial for determining a patient´s health status, specially previously and after an operation. However, many conventional methods are difficult to use in a spontaneously ventilating patient. This paper presents a method for estimating respiratory rate from the signal of a photoplethysmograph. This is a non-invasive sensor that can be used to obtain an estimation of beats per minute of a given patient by measuring light reflection on the patient’s blood vessel and counting changes in blood flow. The PPG signal also offers information about respiration, so respiratory rate can be obtained through signal processing. The proposed method based on digital filtering was implemented in a wearable device and tested on 30 volunteers, and the results were compared with the ones measured by traditional ways. The results show that there is no statistically significant difference between the data measured by the device and the traditional method.engSciencie &Engineering Research Support Society (SERSC)International Journal of Signal Processing, Image Processing and Pattern RecognitionVol. 11, No. 2 (2018)https://www.researchgate.net/publication/324843101_A_Signal_Processing_Method_for_Respiratory_Rate_Estimation_through_PhotoplethysmographyBiomedical signal processingPhotoplethysmographyTelemedicineRespiratory rateA Signal Processing Method for Respiratory Rate Estimation through Photoplethysmographyarticlehttp://purl.org/coar/resource_type/c_6501L. Goldman, “Goldman-Cecil medicine”, Philadelphia, PA: Elsevier/Saunders, (2016).Z. Sun, “Postoperative Hypoxemia Is Common and Persistent: A Prospective Blinded Observational Study”, Anesth. Analg., vol. 121, no. 3, (2015) September, pp. 709-715.L. Nilsson, A. Johansson, and S. Kalman, “Monitoring of respiratory rate in postoperative care using a new photoplethysmographic technique”, PubMed Commons, vol. 16, no. 4, (2001), pp. 309-315.N. Patwari, L. Brewer, Q. Tate, O. Kaltiokallio and M. Bocca, “Breathfinding: A Wireless Network That Monitors and Locates Breathing in a Home”, IEEE J. Sel. Top. Signal Process., vol. 8, no. 1, (2014) February, pp. 30-42.S. Moreno, A. Quintero, C. Ochoa, M. Bonfante, R. Villareal and J. Pestana, “Remote monitoring system of vital signs for triage and detection of anomalous patient states in the emergency room”, 2016 21st Symp. Signal Process. Images Artif. Vision, STSIVA 2016, (2016), pp. 1-5.A. Schäfer and J. Vagedes, “How accurate is pulse rate variability as an estimate of heart rate variability?”, Int. J. Cardiol., vol. 166, no. 1, (2018) January, pp. 15-29.L. Nilsson, A. Johansson, J. Svanerudh and S. Kalman, “Is the respiratory component of the photoplethysmographic signal of venous origin?”, Med. Biol. Eng. Comput., vol. 37, (1999), pp. 912- 913.P. S. Addison and J. N. Watson, “Secondary wavelet feature decoupling (SWFD) and its use in detecting patient respiration from the photoplethysmogram”, Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439), 2003, vol. 3, p. 2602-2605.Y. Der Lin, Y. H. Chien and Y. S. Chen, “Wavelet-based embedded algorithm for respiratory rate estimation from PPG signal”, Biomed. Signal Process. Control, vol. 36, (2017), pp. 138-145.K. Nakajima, T. Tamura and H. Miike, “Monitoring of heart and respiratory rates by photoplethysmography using a digital filtering technique”, Med. Eng. Phys., vol. 18, no. 5, (1996), pp. 365-372.S. G. Fleming and L. Tarassenko, “A Comparison of Signal Processing Techniques for the Extraction of Breathing Rate from the Photoplethysmogram”, Int. J. Biol. Life Sci., vol. 2, no. 4, (2006), pp. 233-237.Y. Zhou, Y. Zheng, C. Wang and J. Yuan, “Extraction of respiratory activity from photoplethysmographic signals based on an independent component analysis technique: Preliminary report”, Instrum. Sci. Technol., vol. 34, no. 5, (2006), pp. 537-545.A. Garde, W. Karlen, J. M. Ansermino and G. A. Dumont, “Estimating respiratory and heart rates from the correntropy spectral density of the photoplethysmogram”, PLoS One, vol. 9, no. 1, (2014).W. Karlen, S. Raman, J. M. Ansermino and G. A. Dumont, “Multiparameter respiratory rate estimation from the photoplethysmogram”, IEEE Trans. Biomed. Eng., vol. 60, no. 7, (2013), pp. 1946-1953.S. A. Shah, S. Fleming, M. Thompson and L. Tarassenko, “Respiratory rate estimation during triage of children in hospitals”, J. Med. Eng. Technol., vol. 39, no. 8, (2015), pp. 514-524.K. V. Madhav, E. H. Krishna and K. A. Reddy, “Extraction of respiratory activity from pulse oximeter’s PPG signals using MSICA”, Proc. 2016 IEEE Int. Conf. Wirel. Commun. Signal Process. Networking, WiSPNET 2016, (2016), pp. 823-827.D. Birrenkott, M. A. F. Pimentel, P. J. Watkinson and D. A. Clifton, “A Robust Fusion Model for Estimating Respiratory Rate from Photoplethysmography and Electrocardiography”, IEEE Trans. Biomed. Eng., no. c, (2017), pp. 1-9.A. Cicone and H. T. Wu, “How nonlinear-type time-frequency analysis can help in sensing instantaneous heart rate and instantaneous respiratory rate from photoplethysmography in a reliable way”, Front. Physiol., vol. 8, no. SEP, (2017), pp. 1-17.M. A. F. Pimentel, “Toward a robust estimation of respiratory rate from pulse oximeters”, IEEE Trans. Biomed. Eng., vol. 64, no. 8, (2017), pp. 1914-1923.C. Orphanidou, “Derivation of respiration rate from ambulatory ECG and PPG using Ensemble Empirical Mode Decomposition: Comparison and fusion”, Comput. Biol. Med., vol. 81, (2017), pp. 45- 54.M. A. Motin, C. K. Karmakar and M. Palaniswami, “An EEMD-PCA approach to extract heart rate, respiratory rate and respiratory activity from PPG signal”, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2016–October, no. 0, (2016), pp. 3817-3820.X. Zhang and Q. Ding, “Fast respiratory rate estimation from PPG signal using sparse signal reconstruction based on orthogonal matching pursuit”, 2016 50th Asilomar Conf. Signals, Syst. Comput., (2016), pp. 1631-5.H. Dubey, N. Constant and K. Mankodiya, “RESPIRE: A Spectral Kurtosis-Based Method to Extract Respiration Rate from Wearable PPG Signals”, Proc. - 2017 IEEE 2nd Int. Conf. Connect. Heal. Appl. Syst. Eng. Technol. CHASE 2017, (2017), pp. 84-89.Electrical and Computer Engineering in Medicine, “CapnoBase,” 2010. [Online]. Available: http://www.capnobase.org/. [Accessed: 23-Feb-2018].LICENSElicense.txtlicense.txttext/plain; charset=utf-8368https://bonga.unisimon.edu.co/bitstreams/96ff1982-4989-4561-9cc1-4b7e413bb7f8/download3fdc7b41651299350522650338f5754dMD5220.500.12442/2342oai:bonga.unisimon.edu.co:20.500.12442/23422019-04-11 21:51:43.328metadata.onlyhttps://bonga.unisimon.edu.coDSpace UniSimonbibliotecas@biteca.comPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj48aW1nIGFsdD0iTGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyIgc3R5bGU9ImJvcmRlci13aWR0aDowIiBzcmM9Imh0dHBzOi8vaS5jcmVhdGl2ZWNvbW1vbnMub3JnL2wvYnktbmMvNC4wLzg4eDMxLnBuZyIgLz48L2E+PGJyLz5Fc3RhIG9icmEgZXN0w6EgYmFqbyB1bmEgPGEgcmVsPSJsaWNlbnNlIiBocmVmPSJodHRwOi8vY3JlYXRpdmVjb21tb25zLm9yZy9saWNlbnNlcy9ieS1uYy80LjAvIj5MaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIEF0cmlidWNpw7NuLU5vQ29tZXJjaWFsIDQuMCBJbnRlcm5hY2lvbmFsPC9hPi4=